
1

A mathematical Language for

MRI Reconstructions

Version 0.0: “Little Wolf”

Previous Versions: none

Date: 2023, June 20

Author: Bastien Milani

Contacts:

bastien.milani@yahoo.fr

Supporting Institutions

University of Lausanne (UNIL), Lausanne, Switzerland

Center for Biomedical Imaging (CIBM), Lausanne, Switzerland

Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland

Bistro de l’Atlantic, Malley, Switzerland

Founding

Swiss National Science Foundation (SNSF) grant number 320030B_201292

Dotation of Professor Matthias Stuber (UNIL) , Lausanne, Switzerland

2

Table of Contents

Introduction ... 4

Dear Reader ... 4

Plan of the text .. 6

Acknowledgments ... 7

Part I: Mathematical Background .. 9

1. Euclidean spaces .. 9

1.1 Some language and definitions ... 9

1.2 Real and complex description of a complex 𝒏-dimensional vector-space 12

1.3 Real-valued Euclidean-products, complex-valued Hermitian-products and 2-norms 16

1.4 The matrices associated to a H-product and an E-product ... 19

1.5 Adjoint-homomorphism and Adjoint-matrix ... 20

1.6 Gradient and squared-norm functions .. 22

1.7 Orthogonal decompositions and orthogonal projections ... 26

1.8 The decomposition associated to a homomorphism and the invertible restriction of a

homomorphism ... 28

2. The least-square problem ... 33

2.1 The least-square problem and its normal equation .. 33

2.2 The invertible normal equation associated to the least-square problem 39

2.3 Conjugate-gradient-descent method for the least-square problem ... 41

3. The generalized-LASSO problem ... 52

3.1 The 1-norm and the Soft-thresholding .. 52

3.2 The constrained 1-norm problem and the generalized-LASSO problem 55

3.3 The generalized-LASSO problem with multiple 1-norm-terms ... 60

Part II: Algorithms .. 62

4. The conjugate-gradient-algorithm .. 62

4.1 The CGD-algorithm for least-square problems ... 62

4.2 Preconditioning ... 65

4.3 The CGD-algorithm for least-square problems with 2 terms .. 66

4.4 The CGD-algorithm for least-square problems with multiple terms ... 72

5 The ADMM-algorithm for the generalized-LASSO problem ... 76

Part III: Discretization .. 78

3

6. Sampling of functions and approximation of norms with their associated Euclidean-products 78

6.1 Sampling .. 78

6.2 The 2-norm of a vector related to the L2-norm of a function ... 78

6.3 The 1-Norm of a vector related to the L1-norm of a function .. 81

Appendices .. 85

A. Counter-example to uniqueness of the solution of the generalized-LASSO problem 85

References ... 88

4

Introduction

Dear Reader

Please allow me to introduce myself, I am Bastien, the author of this text. Enjoy this reading with a cup

of coffee, or any substance you like if it the side effects are not too damageable. Because life should not

be boring, we allow sometimes an informal language, in particular when giving some intuitive indication

in order to help the understanding. But the goal is really to present a formal mathematical material, or as

formal as possible whenever approximations or hypothesis needs to be done. The author considers that

there is something human in the contrast between the form and the content. And please excuse my

inexact English, I am not a native English speaker. If you want to write me to propose some corrections,

you are welcome.

By the way, this very first version of the text is released only with part I (Mathematical Background) and

part II (Algorithms). And also with the first chapter of part III (Discretization). The other chapters of part

III and the next parts are in construction: part IV (MRI-reconstructions) and part V (Implementations). I

don’t really know when they will be ready. The reason why I publish the first parts of that text is that I

am in a situation where I need it to serve as supplementary material for scientific publications.

The present text can be considered as something between a course and a book. If you found it, you

probably know that “MRI” means “magnetic resonance imaging”, or “nuclear magnetic resonance

imaging” for purists. This text was originally written for the image reconstructions of MRI data acquired

along non-Cartesian trajectories (non-Cartesian MRI), which are essentially iterative reconstructions,

with a few exceptions such as gridded reconstructions. The fact that a trajectory is non-Cartesian makes

the reconstructions more subtle, more complicated than for a Cartesian trajectory. One of the

motivations for writing this text came in fact from a feeling of the author, that non-Cartesian MRI

reconstruction deserved a specific or dedicated mathematical formulation because the usual

mathematical tools used in Cartesian reconstruction are possibly not suited for implementing

non-Cartesian MRI reconstructions. That is why the text was originally named “A Language for non-

Cartesian MRI reconstructions”. However, all the mathematical material and algorithms described in the

present text are valid for any trajectory, including partially sampled Cartesian-trajectories and fully

sampled Cartesian trajectories, hence the title “A Language for MRI reconstructions”. Another source of

motivation for writing this text was the fact that mathematical algorithms for solving the optimization

problems we encounter in MRI reconstruction are usually described in a general abstract (not practically

5

oriented) way by mathematician who are specialists in optimization, while the implementations of these

algorithms for MRI reconstructions are often done by engineers who speak a different language than

mathematicians. The misunderstanding between these two worlds was one of the reasons why this text

was written, with the hope that it could help them to collaborate. Whenever I had the feeling that well-

known mathematical results, definitions or algorithms could be generalized, stated from a different

view-point, reformulated or described in details, in some way that could be beneficial for MRI

reconstruction scientists, I tried to do my best to achieve it.

One last thing: we break a few conventions of the mathematician community in this text. Notably, I don’t

put any dot nor comma after any equation. My mathematician friends threated me with a knife because

of that. But I will not put those dots. They are too ugly. I prefer to go to hell. Another thing that

mathematicians will never do in a text is to propose a pronunciation for some symbols. Here we do that.

Mathematicians are not aware that when engineers encounter some symbol such as “𝐴†” or “𝜉”, they

may stop reading the text because they don’t know how to pronounce the symbol in their head. We are

human and we think with our senses, even if we construct mathematical objects. The author believes

that neglecting that is a problem.

This text is written (currently in development) in the intentions to reach following aims:

- to develop a notation, a formal mathematical description, a language for MRI reconstruction,

- to describe examples of MRI reconstruction algorithms with the developed language as formally

as possible,

- to point out where approximation and hypothesis need to be done in algorithms because the

mathematical formalism cannot be practically achieved.

- To present some real-world implementations.

In this first version however, we only present some mathematical background and algorithms, which

includes in particular

- a detailed description of the conjugate-gradient-descent-algorithm for solving different instances

of the least-square problem,

- the ADMM-algorithm for solving the generalized-LASSO problem, including the

generalized-LASSO problem with multiple 1-norm terms,

6

Plan of the text

The text is divided into parts, the parts are divided into chapters and chapters are divided into sections.

Part 1 is about mathematics only and contains the following chapters:

- In chapter 1 we define mathematical notations and review some results coming mostly from

linear algebra and sometimes from convex analysis or optimization theory. In particular, we

develop a notation in order to represent any vector space isomorphic to ℂ𝑛 as a vector space

isomorphic to ℝ2𝑛. All vector spaces we encounter are finite-dimensional and all the presented

linear algebra material exploits the presence of a real Euclidean product on each vector space,

which may be different from the canonical Euclidean product on ℂ𝑛 and ℝ2𝑛. If 𝐴 is the matrix of

a linear map between vector spaces 𝑋 and 𝑌, we will explain that the matrix 𝐴† of the adjoint

map verifies

𝐴† = 𝐻𝑋
−1𝐴∗𝐻𝑌

 (∗)

where 𝐴∗ is the complex-conjugate-transpose of matrix 𝐴 and 𝐻𝑋 resp. 𝐻𝑌 are suitable matrices

related to the real-valued Euclidean products on 𝑋 resp. 𝑌 (details are given in section 1.3).

We also present in chapter 1 a different definition of the gradient of a function. Namely, we set

𝑔𝑟𝑎𝑑𝑥(𝑓) = 𝐻𝑋
−1 ∇𝑓 (∗∗)

where 𝐻𝑋 is the matrix present in (∗). This definition is particularly suited for vector spaces with

2-norms (defined later in the text) that are different from the standard 2-norms. In particular,

given the squared-norm function

𝑥 ⟼ ‖𝐴𝑥 − 𝑦‖𝑌,2
2 (∗∗∗)

where 𝐴 is any linear map from 𝑋 into a (finite dimensional) vector space 𝑌 and where ‖⋅‖𝑌,2
2 is a

2-norm on 𝑌, its gradient (as defined in ∗∗) has the familiar expression

𝐴†(𝐴𝑥 − 𝑦)

It is worth to point out that this alternative definition makes the negative gradient

(−𝑔𝑟𝑎𝑑𝑥(𝑓)) parallel to the normalized direction of steepest descent for any differentiable

function.

7

- In chapter 2, we demonstrate that a version of the conjugate gradient descent method

(CGD-method or CGD-algorithm), can be applied to the least-square problem and always

converges to a minimizer of the squared norm function (∗∗∗). In fact this is true for any linear

map 𝐴 in (∗∗∗), while most manuals restrict usually their description to the case where the

symmetric map 𝐴†𝐴 is positive definite. In order to demonstrate this convergence, we first

reformulate the least-square problem as an invertible problem that can be solved abstractly

(free of concrete evaluation) with CGD-algorithm, and we then show that the CGD applied to the

original least-square problem generate the same sequence as the invertible problem, up to a

translation.

- In chapter 3, we describe the generalized-LASSO problem.

Part 2 is about algorithms and is implementation oriented. We describe CGD-algorithm for 1-term,

2-terms and multiple-terms least-square problems, and we write some pseudo-code of those algorithms

in order to help their implementation. We describe then the ADMM-algorithm for solving the

generalized-LASSO problem (including multiple 1-norm terms), which is one of the central algorithms for

today’s MRI reconstruction.

Part 3 contains only its first chapter for the moment. It describes how the real Euclidean spaces we work

on arise from a discrete approximation of the physical continuous world.

As this version 0.0 is the very first version of the book, we encourage the reader to contact the author if

he or she thinks that corrections or missing references, additional material, … should be brought to the

text.

Acknowledgments

I thank in first place my colleague and friend Jean-Baptiste Ledoux for fighting next to me with his

unequaled skills in MRI acquisitions. The only tech who find the errors in my acquisition protocols.

I would like to thank my friend Gianluca Giacchi for proofreading the text, for his suggestions, fruitful

discussions and (more importantly) unique sense of humor. I propose to solve the problem of dot-after-

equations with a sword duel.

An energy without comparison was brought by Benedetta Franceschiello who’s force spreads in

researchers. What we cannot prove we have to believe in.

I thank Jerome Yerly for proofreading the text and for his pioneering abilities in implementations.

8

I am grateful to Pina Marziliano who can read between the lines. Thank for the support.

Finally I would like to gratefully thank Matthias Stuber, who believed in me since he never fired me,

even if I have spent the three first years of my postdoc writing theories without producing a single

image. Thanks again.

9

Part I: Mathematical Background

In this part I, we describe mathematical notions and algorithms. This part contains no approximation nor

physical hypothesis. It contains no physics and there is no direct implication to MRI. It is a pure

mathematical description. We limit to point out, sometimes, how some mathematical notions are linked

to practical imaging concepts in order to help the intuition.

1. Euclidean spaces

1.1 Some language and definitions

Any vector-space we encounter in this text is finite dimensional. We recall the definition of a vector

space over a field:

Let be 𝑋 a non-empty set and (𝕂, ⨁ ,⨀) a field (⨁ is the addition in 𝕂 and ⨀ is the multiplication in

𝕂). Then is (𝑋,𝕂,+, ⋅) a vector space over the field (𝕂, ⨁ ,⨀) if the following axioms are satisfied:

- " + " is a binary operation (called “addition”) from 𝑋 × 𝑋 to 𝑋 which is so that (𝑋,+) is an

abelian group (i.e. a commutative group). That is

(a) ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 holds 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 (associativity),

(b) there exist a unique neutral element 0 ∈ 𝑋 such that 𝑥 + 0 = 0 + 𝑥 = 𝑥 ∀ 𝑥 ∈ 𝑋,

(c) for any 𝑥 ∈ 𝑋 there exist a unique element 𝑥−1 ∈ 𝑋 (the additive inverse of 𝑥) so that

𝑥 + 𝑥−1 = 𝑥−1 + 𝑥 = 0,

(d) it holds 𝑥 + 𝑦 = 𝑦 + 𝑥 ∀ 𝑥, 𝑦 ∈ 𝑋 (commutativity).

- " ⋅ " is a binary operation (called “scalar multiplication”) from 𝕂 × 𝑋 to 𝑋 that verifies the

following axioms: ∀𝛼, 𝛽 ∈ 𝕂 and ∀𝑥, 𝑦 ∈ 𝑋 holds

(a) 𝛼 ⋅ (𝛽 ⋅ 𝑥) = (𝛼 ⨀ 𝛽) ⋅ 𝑥

(b) 𝛼 ⋅ (𝑥 + 𝑦) = 𝛼 ⋅ 𝑥 + 𝛼 ⋅ 𝑦

(c) (𝛼⨁𝛽) ⋅ 𝑥 = 𝛼 ⋅ 𝑥 + 𝛽 ⋅ 𝑥

(d) the neutral element 𝟏 of the multiplication in 𝕂 verifies 𝟏 ⋅ 𝑥 = 𝑥.

In order to simplify the notation, we will just write 𝛼 𝑥 instead of 𝛼 ⋅ 𝑥, we will write 𝛼 𝛽 instead of

𝛼 ⨀ 𝛽, and we will write 𝛼 + 𝛽 instead of 𝛼 ⨁𝛽. We use then same symbol for the addition in 𝕂 and in

𝑋 but the arguments make it clear which addition is written. The same remark holds for the

multiplication. In this text, we will only encounter the field of complex numbers ℂ with complex addition

and multiplication, and the field of real numbers ℝ with real addition and multiplication.

10

A linear function between two vectors spaces will often be designated as a “vector space

homomorphism” of just “homomorphism” for short. We write it for example as

𝐴: 𝑋 ⟶ 𝑌

𝑥 ⟼ 𝐴𝑥

We will also call it a “linear map” or just a “map”. An homomorphism from a vector space to itself is

called an “endomorphism” and if it is invertible it is called and “isomorphism”. We recall that a linear

map 𝐴 from 𝑋 to 𝑌 is any function such that

𝐴(𝛼 𝑎 + 𝛽 𝑏) = 𝛼 𝐴𝑎 + 𝛽 𝐴𝑏

In most of the sections, we assume that every vector space is readily endowed with a vector basis. When

that is true, a vector-space homomorphism is thus uniquely represented by a matrix and a vector (i.e. an

element of a vector space) is uniquely represented as a column vector of coordinates. By abuse of

notation, if 𝐴 is the matrix of a homomorphism, we will then also write the homomorphism itself with

letter 𝐴, the context being in principle clear enough to allow disambiguation. In order to state that a

vector space 𝑋 is a real 𝑛-dimensional vector space, we will write 𝑋 ≃ ℝ𝑛. That means the choice of a

basis on 𝑋 allows to write each vector as a coordinate vector in ℝ𝑛. Similarly, in order to state that a

vector space 𝑋 is a complex 𝑛-dimensional vector space, we will write 𝑋 ≃ ℂ𝑛. That means the choice of

a basis on 𝑋 allows to write each vector as a coordinate vector in ℂ𝑛.

If 𝑋1 ≃ ℝ𝑛 and 𝑋2 ≃ ℝ𝑛 , we will like to say that 𝑋1 and 𝑋2 are two “copies” of the same vector space

ℝ𝑛, although that language is not a formal mathematical convention. In fact are 𝑋1 and 𝑋2 different

(they differ at least by their name), but both are isomorphic to the same structure ℝ𝑛. The author think

that “being a copy of ℝ𝑛 or ℂ𝑛” is less barbaric than “…being isomorphic to…”.

In some of the sections, we break the convention of assuming the presence of a vector basis and we

treat homomorphisms on vector spaces in an abstract way i.e. without any choice of vector basis. In that

context, any choice of a basis allows writing any homomorphism as a matrix, and any vector as a vector

of coordinates, but we let the choice of the basis open. The use of that convention will be mentioned at

the beginning of the sections in question.

We will use the symbol “ ≔ ” in order to write “equal by definition”.

11

The complex-conjugate-transpose of any complex-valued matrix 𝐴 will be written 𝐴∗ (pronounced “𝐴

star”) and its transpose matrix will be written 𝐴𝑇 (pronounced “𝐴 transpose”). The real-valued matrix

consisting of the real part of 𝐴 will be written real(𝐴) or just 𝑟𝐴 , and the real-valued matrix consisting

of the imaginary part of 𝐴 will be written imag(𝐴) or just 𝑖𝐴. We note that 𝑖𝐴 is real-valued and is a non-

dissociable symbol. It does NOT mean “𝑖 times 𝐴. ”

The complex-conjugate-transpose of column vector 𝑥 is a raw vector that will be written 𝑥∗

(pronounced “x star”). The transpose of column vector 𝑥 is a raw vector that will be written 𝑥𝑇

(pronounced “x transpose”). The real-valued vector consisting of the real part of a column vector 𝑥 will

be written real(𝑥) or just 𝑟𝑥. The real-valued vector consisting of the imaginary part of a column vector

𝑥 will be noted imag(𝑥) or just 𝑖𝑥.

The matrix-matrix multiplication of matrices 𝐴 and 𝐵 will be written 𝐴𝐵. The matrix-vector multiplication

of matrix 𝐴 and vector 𝑣 will be written 𝐴𝑣. If 𝑣 is a raw-vector and 𝑥 a column vector, their product 𝑣 𝑥

is given by interpreting 𝑣 as a matrix with one single line and 𝑥 as a matrix with one single column.

Typically, given two real-valued column vectors 𝑥 and 𝑤, then is 𝑤𝑇𝑥 their standard Euclidean product.

If 𝑥 and 𝑤 are complex-valued is 𝑤∗𝑥 their standard Hermitian product.

The complex-conjugate of a complex number 𝛼 will be written 𝛼∗ (and not �̅� because we keep the

bar-symbol for another notion).

Excepted homomorphisms, any function 𝑓 will be written as 𝑓(∙) in order to stress the fact that it is a

function and not a vector or a number. This didactic notation is more cumbersome than just writing 𝑓

but we gain in clarity and it allows us to write vectors like 𝑓, without an arrow on the top. For example, if

the function is complex-valued, 𝑓(∙) describes the function while 𝑓(𝑥) describes the complex value

obtained by evaluating function 𝑓(∙) on argument 𝑥. Sometimes, we will have to break that convention

because the notation would become unpractical. We will always mention when that convention is

broken.

Given a homomorphism

𝐴 ∶ 𝑋 ⟶ 𝑉

𝑥 ⟼ 𝐴 𝑥

12

from a vector space 𝑋 to a vector space 𝑉, the kernel (or null-space) of 𝐴 will be written Ker(𝐴) (an

other notation is ℵ(𝐴)) and is defined as the sub-linear space of 𝑋 given by

Ker(𝐴) ∶= {𝑥 ∈ 𝑋 | 𝐴 𝑥 = 0}

The image of 𝐴 (or range of 𝐴) will be written Im(𝐴) (an other notation is Rg(𝐴)) and is the sub-linear

space of 𝑉 given by

Im(𝐴) = {𝑣 ∈ 𝑉 |∃ 𝑥 ∈ 𝑋 ∶ 𝐴 𝑥 = 𝑣} = {𝐴𝑥 | 𝑥 ∈ 𝑋}

We will write the square root of −1 with symbol 𝑗 so that holds

𝐴 = 𝑟𝐴 + 𝑗 𝑖𝐴 𝑥 = 𝑟𝑥 + 𝑗 𝑖𝑥 𝛼 = 𝑟𝛼 + 𝑗 𝑖𝛼

𝐴∗ = 𝑟𝐴𝑇 − 𝑗 𝑖𝐴𝑇 𝑥∗ = 𝑟𝑥𝑇 − 𝑗 𝑖𝑥𝑇 𝛼∗ = 𝑟𝛼 − 𝑗 𝑖𝛼

Speaking about this symbols, we will pronounce 𝑟𝐴 as “are A” or “real-part of 𝐴” or just “real-part 𝐴”.

We will pronounce 𝑖𝐴 as “I A” or “imaginary part of 𝐴” or just “imag-part A”. In general, we will

pronounce real(…) as the “real-part of (…)” or just “real-part (…)”. We will pronounce imag(…) as the

“imaginary-part of (…)” or just “imag-part (…)”.

1.2 Real and complex description of a complex 𝒏-dimensional vector-space

Given two vector spaces 𝑋 ≃ ℂ𝑛 and 𝑌 ≃ ℂ𝑚, we assume the existence of a vector basis in each of them.

All vectors 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 are thus uniquely represented by vectors of complex-valued coordinates

and any homomorphism from 𝑋 to 𝑌 is uniquely represented by a complex-valued matrix. We present in

this section two different but equivalent descriptions of such vectors and matrices. We will call them the

“real-description” and the “complex-description”. In fact, each one is a mathematical “representation” of

the other. But we will not use the term “representation” in this text because we don’t want to go into

the theory of mathematical representations, which is something defined very formally in mathematics.

For any vector 𝑥 ∈ 𝑋 ≃ ℂ𝑛, we define its complex description as the direct one i.e. 𝑥 itself. In terms of

real and imaginary parts it means

𝑥 = 𝑟𝑥 + 𝑗 𝑖𝑥

The same holds on 𝑌. For any matrix 𝐴 ∈ ℂ𝑚×𝑛 of an homomorphism between two vector spaces 𝑋 ≃

ℂ𝑛 and 𝑌 ≃ ℂ𝑚 we define its complex description as the direct one, i.e. 𝐴 itself. In term of real and

imaginary part it means

13

𝐴 = 𝑟𝐴 + 𝑗 𝑖𝐴

We define the real description of a vector 𝑥 ∈ ℂ𝑛 respectively a matrix 𝐴 ∈ ℂ𝑚×𝑛 as the block vector

resp. block matrix

[
𝑟𝑥
𝑖𝑥

] ∈ ℝ2𝑛 resp. [
𝑟𝐴 −𝑖𝐴
𝑖𝐴 𝑟𝐴

] ∈ ℝ2𝑚×2𝑛

Formally, this defines two functions defined by

ℛ(∙) ∶ ℂ𝑛 ⟶ ℝ2𝑛

𝑥 ⟼ ℛ(𝑥) ≔ [
𝑟𝑥
𝑖𝑥

]

and

ℛ(∙) ∶ ℂ𝑚×𝑛 ⟶ ℝ2𝑚×2𝑛

𝐴 ⟼ ℛ(𝐴) ≔ [
𝑟𝐴 −𝑖𝐴
𝑖𝐴 𝑟𝐴

]

We do an abuse of notation by choosing the same symbol ℛ for two different functions. But the

argument makes it clear, which function is selected (programmers would talk about “overload of

function name”). Therefore, given a vector 𝑦 ∈ ℂ𝑚 in another vector space, we also write ℛ(𝑦) for its

real description.

Instead of writing ℛ(𝐴) resp. ℛ(𝑥) we will also write ℛ𝐴 resp. ℛ𝑥 in order to simplify the notation. We

will pronounce ℛ(𝐴) as “real 𝐴” or “real description of 𝐴” or just “real of 𝐴”. This has to be

discriminated from 𝑟𝐴 which is pronounced “are A” or “real-part of 𝐴” or just “real-part 𝐴”. In general

we will pronounce ℛ(…) as the “real description of (…)” or just “real of (…)”. The symbol ℛ will be

pronounced “real”, while symbol “r” will be pronounced “are”.

For the sake of completeness, consider the following simple example: hereafter on the left is the

complex description of a 4-dimensional complex vector. On the right stands the real description of the

same complex vector. We want to interpret it as two different description of the same vector.

14

𝑥 = [

4 + 𝑗 6
3 − 𝑗 3
7 + 𝑗 0
0 + 𝑗10

] ℛ𝑥 =

[

4
3
7
0
6
3
0
10]

The inverse of ℛ will be written ℛ−1 and will be pronounced “real-inverse”. It verifies obviously

ℛ−1 [
𝑟𝑥
𝑖𝑥

] = 𝑟𝑥 + 𝑗 𝑖𝑥 ℛ−1 [
𝑟𝐴 −𝑖𝐴
𝑖𝐴 𝑟𝐴

] = 𝑟𝐴 + 𝑗 𝑖𝐴

It can be shown that all vector operations commutes with ℛ and ℛ−1. That means that these two

descriptions are fully equivalent. They are two descriptions of the same thing.

For example the complex matrix-vector multiplication verifies

𝐴 ∙ 𝑥 = (𝑟𝐴 + 𝑗 𝑖𝐴)(𝑟𝑥 + 𝑗 𝑖𝑥) = (𝑟𝐴 ∙ 𝑟𝑥 − 𝑖𝐴 ∙ 𝑖𝑥) + 𝑗 (𝑖𝐴 ∙ 𝑟𝑥 + 𝑟𝐴 ∙ 𝑖𝑥)

whereas in the real description it reads

ℛ𝐴 ∙ ℛ𝑥 = [
𝑟𝐴 – 𝑖𝐴
𝑖𝐴 𝑟𝐴

] ∙ [
𝑟𝑥
𝑖𝑥

] = [
𝑟𝐴 ∙ 𝑟𝑥 − 𝑖𝐴 ∙ 𝑖𝑥
𝑖𝐴 ∙ 𝑟𝑥 + 𝑟𝐴 ∙ 𝑖𝑥

]

This demonstrates that

ℛ(𝐴 ∙ 𝑥) = ℛ𝐴 ∙ ℛ𝑥

It can be shown similarly that the product of matrices 𝐴 and 𝐵 verifies

ℛ(𝐴 ∙ 𝐵) = ℛ𝐴 ∙ ℛ𝐵

 As well,

𝐴∗ = 𝑟𝐴𝑇 − 𝑗 𝑖𝐴𝑇

and

[
𝑟𝐴 – 𝑖𝐴
𝑖𝐴 𝑟𝐴

]
𝑇

= [𝑟𝐴𝑇 𝑖𝐴𝑇

−𝑖𝐴𝑇 𝑟𝐴𝑇]

shows that

15

ℛ(𝐴∗) = ℛ(𝐴)𝑇

It can also be shown that 𝐴 is invertible if and only if ℛ𝐴 is invertible and it holds in that case

ℛ(𝐴−1) = (ℛ𝐴)−1 =: ℛ𝐴−1

We avoid the definition of the symbol ℛ(𝑥𝑇) or ℛ(𝑥∗) for any raw vector 𝑥𝑇 or 𝑥∗.

We will note 𝐼𝑑ℝ𝑛 the identity matrix on ℝ𝑛 and more generally 𝐼𝑑𝑋 the identity matrix of any finite-

dimensional vector space 𝑋. The reader may verifies that the complex multiplication of a vector by the

complex value 𝛼 is equivalent to the matrix-multiplication by the matrix

[
𝛼 0 0
0 ⋱ 0
0 0 𝛼

] = 𝑟𝛼 𝑖𝑑ℂ𝑛 + 𝑗 𝑖𝛼 𝑖𝑑ℂ𝑛

in the complex description, or by the matrix

ℛ(𝛼) ≔ [
𝑟𝛼 ∙ 𝑖𝑑ℝ𝑛 −𝑖𝛼 ∙ 𝑖𝑑ℝ𝑛

𝑖𝛼 ∙ 𝑖𝑑ℝ𝑛 𝑟𝛼 ∙ 𝑖𝑑ℝ𝑛
]

in the real description. This defines the real- and complex-description of a complex value. In particular,

the multiplication by 𝑗 (the square root of −1) is represented by the multiplication by the matrix

[
0 – 𝑖𝑑ℝ𝑛

𝑖𝑑ℝ𝑛 0
]

in the real description. We finally notice that any real matrix of the form

[
𝑟𝐴 – 𝑖𝐴
𝑖𝐴 𝑟𝐴

] ∈ ℝ2𝑚×2𝑛

[1.2.1]

defines a map from ℝ2𝑛 to ℝ2𝑚 as well as a map from ℂ𝑛 to ℂ𝑚 by taking its complex description. But an

arbitrary matrix in ℝ2𝑚×2𝑛 is not necessarily of this form and its complex description is not necessarily

defined in general. All linear maps we encounter must have a real description of the form [1.2.1] in order

to make our algebraic framework valid. In practice, the linear map we encounter will always match that

criteria.

It is possible to build a formal theory of the real 2𝑛-dimensional vector space (ℂ𝑛, ℝ,+ ⋅) i.e. the vector

space of 𝑛-components complex-valued vectors over the field of real numbers. The set of that vector

16

space is made of complex valued vectors while the scalars that act on them are purely real numbers. In

that vector space is 𝑗 not a scalar anymore, it is a matrix (a linear map) as described above. If 𝑋 is a

vector space isomorphic to ℂ𝑛 by the choice of a vector basis (𝑒1⃗⃗ ⃗, … , 𝑒𝑛⃗⃗⃗⃗) (i.e. 𝑋 ≃ ℂ𝑛) then the list of the

2𝑛 vectors (𝑒1⃗⃗ ⃗, … , 𝑒𝑛⃗⃗⃗⃗ , 𝑗 𝑒1⃗⃗ ⃗, … , 𝑗 𝑒𝑛⃗⃗⃗⃗ ,) is a basis of the 2𝑛-dimensional vector space 𝑋 over the field of real

numbers and the multiplication by 𝑗 is a linear map on 𝑋 (which depends on the choice of the basis). The

multiplication by a complex value also becomes a linear map in that real vector space. This 2𝑛-

dimensional vector space over the field of real numbers is in fact our real description of 𝑋 ≃ ℂ𝑛. We did

not introduce it as formally as a mathematician would do because it is cumbersome and we would not

gain any better understanding of the tools we need to describe MRI reconstruction. We leave that

exercise to the interested reader.

We finish this section with an example. Let be 𝛀 the 𝑛 × 𝑛 matrix of the discrete Fourier transform (DFT)

on ℂ𝑛, which contains the complex-valued trigonometric coefficients. In the real description, this matrix

represents an isomorphism from the real vector space ℝ2𝑛 to itself. That may sound counter-intuitive

because the matrix 𝛀 is complex valued. But in fact, 𝛀 can be written in the real description:

𝓡𝛀 = [
𝑟𝛀 – 𝑖𝛀

𝑖𝛀 𝑟𝛀
]

It can perfectly be described as a real matrix. The DFT of a vector 𝑥 can be evaluated as

[
𝑟𝛀 – 𝑖𝛀

𝑖𝛀 𝑟𝛀
] ∙ [

𝑟𝑥
𝑖𝑥

] = [
𝑟𝛀 ∙ 𝑟𝑥 − 𝑖𝛀 ∙ 𝑖𝑥
𝑖𝛀 ∙ 𝑟𝑥 + 𝑟𝛀 ∙ 𝑖𝑥

]

If on prefers the complex description (for some implementation purpose for example), we can use the

complexification of the previous result insetead:

(𝑟𝛀 ∙ 𝑟𝑥 − 𝑖𝛀 ∙ 𝑖𝑥) + 𝑗 (𝑖𝛀 ∙ 𝑟𝑥 + 𝑟𝛀 ∙ 𝑖𝑥) = (𝑟𝛀 + 𝑗 𝑖𝛀) ⋅ (𝑟𝑥 + 𝑗 𝑖𝑥) = 𝛀 𝑥

The right-hand side of the previous equation is the complex-description of the DFT and can be evaluated

with a common fast-Fourier-transform (FFT) implementation. The DFT can either be seen as acting on ℂ𝑛

or on ℝ2𝑛. There is nothing wrong in saying the (𝑛-dimensional) DFT with matrix 𝛀 is a linear map from

the real vector space ℝ2𝑛 to itself.

1.3 Real-valued Euclidean-products, complex-valued Hermitian-products and 2-norms

We present in this subsection the real-valued Euclidean product on ℂ𝑛. Formally, the following

description is the same as considering the vector space (ℂ𝑛, ℝ) of complex-valued vectors over the field

17

of real numbers, and to endow it with a real-valued Euclidean product. But we will here scarify a bit

formality to the benefit of simplicity by omitting to speak about the fields of real or complex numbers. It

has no consequence on the final results we want to describe. For practical reasons, we will also define

the complex-valued Hermitian-product associated to a real-valued Euclidean product.

The round-brackets (∙ | ∙) will stands for any complex-valued Hermitian-product, or just H-product for

short. We recall that a complex-valued Hermitian-product on a complex vector-space 𝑋 (over the field ℂ)

is a function of two variables

(∙ | ∙) ∶ 𝑋 × 𝑋 ⟶ ℂ

(𝑥, 𝑦) ⟼ (𝑥|𝑦)

that verifies for any 𝛼, 𝛽 ∈ ℂ and for any 𝑥, 𝑦, 𝑧 ∈ 𝑋

a) (𝛼 𝑥 + 𝛽 𝑦 | 𝑧) = 𝛼∗(𝑥 | 𝑧) + 𝛽∗(𝑦 | 𝑧) and (𝑥| 𝛼 𝑦 + 𝛽 𝑧) = 𝛼(𝑥 | 𝑦) + 𝛽(𝑥 | 𝑧)

b) (𝑥|𝑦) = (𝑦|𝑥)̅̅ ̅̅ ̅̅ ̅

c) (𝑥|𝑥) ∈ ℝ and (𝑥|𝑥) > 0 whenever 𝑥 ≠ 0 and (𝑥|𝑥) = 0 for 𝑥 = 0

Property (c) is called positive-definiteness. We note that the choice of defining skew-linearity in the first

variable is the physicist convention. The mathematician convention is to define skew-linearity in the

second variable.

The triangular brackets ⟨∙ | ∙⟩ will stand for any real-valued Euclidean-product, or just E-product for short.

We define here what is a real-valued Euclidean-product on a real vector space 𝑋 (over the field ℝ). It is a

function of two variables

⟨∙ | ∙⟩ ∶ 𝑋 × 𝑋 ⟶ ℝ

𝑥, 𝑦 ⟼ ⟨𝑥|𝑦⟩

that verifies for any 𝛼, 𝛽 ∈ ℝ ⊂ ℂ and for any 𝑥, 𝑦, 𝑧 ∈ 𝑋

a) ⟨𝛼 𝑥 + 𝛽 𝑦 |𝑧⟩ = 𝛼⟨𝑥|𝑧⟩ + 𝛽⟨𝑦|𝑧⟩ and ⟨𝑥|𝛼 𝑦 + 𝛽 𝑧 ⟩ = 𝛼⟨𝑥|𝑦⟩ + 𝛽⟨𝑥|𝑧⟩

b) ⟨𝑥|𝑦⟩ = ⟨𝑦|𝑥⟩

c) ⟨𝑥|𝑥⟩ ∈ ℝ and ⟨𝑥|𝑥⟩ > 0 whenever 𝑥 ≠ 0 and ⟨𝑥|𝑥⟩ = 0 for 𝑥 = 0

For any two vectors 𝑎, 𝑏 ∈ ℝ2𝑛, the standard E-product of 𝑎 and 𝑏 is the real value given by

18

⟨𝑎|𝑏⟩ℝ2𝑛 ≔ 𝑎𝑇 ∙ 𝑏

For any two vectors 𝑎, 𝑏 ∈ ℂ𝑛, the standard H-product of 𝑎 and 𝑏 is the complex value given by

(𝑎|𝑏)ℂ𝑛 ≔ 𝑎∗ ∙ 𝑏 = (𝑟𝑎𝑇 ∙ 𝑟𝑏 + 𝑖𝑎𝑇 ∙ 𝑖𝑏) + 𝑗 (𝑟𝑎𝑇 ∙ 𝑖𝑏 − 𝑖𝑎𝑇 ∙ 𝑟𝑏)

For any two vectors 𝑎, 𝑏 ∈ ℂ𝑛, the standard E-product of 𝑎 and 𝑏 is the real value given by

⟨𝑎|𝑏⟩ℂ𝑛 ≔ 𝑟𝑒𝑎𝑙(𝑎∗ ∙ 𝑏) = 𝑟𝑎𝑇 ∙ 𝑟𝑏 + 𝑖𝑎𝑇 ∙ 𝑖𝑏 = [
𝑟𝑎
𝑖𝑎

]
𝑇

∙ [
𝑟𝑏
𝑖𝑏

] = ℛ𝑎𝑇 ∙ ℛ𝑏 = ⟨ℛ𝑎|ℛ𝑏⟩ℝ2𝑛

which is nothing else than the standard E-product ⟨∙ | ∙⟩ℝ2𝑛 on ℝ2𝑛. Or said differently, it is the standard

E-product of the vector space we obtain by considering the vector space (ℂ𝑛, ℝ, +, ⋅).

In fact, the real part of any (complex-valued) H-product is always a (real-valued) E-product (while its

complex part is a simplectic form). We want to bring to the attention of the reader that the E-product

(which is real valued by our definition) will be of interest in our reconstructions, and NOT the H-product

(which is complex valued). The vector space of interest in this document is the 2𝑛-dimensional vector

space ℂ𝑛 (over the field of real numbers).

One of the end-point of this book is the solving convex optimization problems where the domain of the

objective function is ℝ2𝑛 ⋍ ℂ𝑛. That means that we consider the real- and imaginary-part of the image

as independent real decision variables. The notions of convex sets and convex function are naturally

defined on real vector spaces with real-valued E-product. As described later in the text, the conjugate-

gradient-descent algorithm makes use of a real-valued Euclidean-product in order to create a line-search

parameter, which has to be real by nature. That is why the complex-valued H-product do not enter

directly in the mathematical framework, but it is really the real-valued E-product enters into

consideration.

For the description of our reconstructions, we will need E-products that are more general than the

standard ones. For the sake of generality, will consider all existing E-products that are the real part of any

H-product on ℂ𝑛. That means that any of our E-product is the real part of an associated H-product.

Given an E-product ⟨∙ | ∙⟩𝑌 ∶= real(∙ | ∙)𝑌 with the associated Hermitian-product (∙ | ∙)𝑌 on a vector space

𝑌, we will make use of the induced 2-norm ‖ ∙ ‖𝑌,2 given by

‖𝑦‖𝑌,2 ≔ √⟨𝑦|𝑦⟩𝑌 = √(𝑦|𝑦)𝑌

19

Both the H-product or E-product can be used to compute the 2-norm because they coincide when both

arguments in the product are identical.

The standard 2-norm on ℂ𝑛 is

‖𝑥‖ℂ𝑛,2 = √ ∑ |𝑟𝑥𝑘|2 + |𝑖𝑥𝑘|2

𝑛

𝑘 = 1

whereas the standard 2-norm on ℝ2𝑛 is

‖ℛ𝑥‖ℝ2𝑛,2 = √ ∑ |(ℛ𝑥)𝑘|
2

2𝑛

𝑘 = 1

= √ ∑ |𝑟𝑥𝑘|2 + |𝑖𝑥𝑘|2

𝑛

𝑘 = 1

= ‖𝑥‖ℂ𝑛,2

1.4 The matrices associated to a H-product and an E-product

For any H-product (∙ | ∙) on ℂ𝑛 there exist a unique matrix 𝐻 so that

(𝑎|𝑏) = 𝑎∗ 𝐻 𝑏

Matrix 𝐻 is then positive-definite and is Hermitian (i.e. 𝐻∗ = 𝐻).

The converse is also true: if 𝐻 is any hermitian positive-definite matrix, then previous equation defines a

H-product. In term or real and imaginary decomposition 𝐻 = 𝑟𝐻 + 𝑗 𝑖𝐻 with real-parts 𝑟𝐻 and

imaginary-part 𝑖𝐻, the positive-definiteness of 𝐻 together with Hermiticity are equivalent to

𝑟𝐻𝑇 = 𝑟𝐻 𝑟𝐻 is positive-definite 𝑖𝐻𝑇 = −𝑖𝐻

Each hermitian product is thus associated to a unique matrix. We will say that 𝐻 is the matrix of (∙ | ∙)

and that the former is a H-product with matrix 𝐻.

For any E-product ⟨∙ | ∙⟩ on ℂ𝑛 there is a unique matrix 𝑆 so that

⟨𝑎|𝑏⟩ = ℛ𝑎𝑇 ∙ 𝑆 ∙ ℛ𝑏

and it follows from the properties of the E-product that 𝑆 is a real, symmetric and positive-definite.

20

Conversely, any real, symmetric and positive-definite matrix 𝑆 ∈ ℝ2𝑛×2𝑛 defines an E-product on ℂ𝑛 via

the previous equation. We say that 𝑆 is the matrix of ⟨∙ | ∙⟩ and the former is an E-product with matrix 𝑆.

But all E-products are not necessary the real-part of a H-product.

We will restrict ourselves on E-products that are the real part of a H-product:

⟨𝑎|𝑏⟩ = 𝑟𝑒𝑎𝑙(𝑎|𝑏)

By writing 𝐻 the matrix of the H-product and writing 𝑆 the matrix of the E-product, it can be shown that

the E-product can be rewritten as

⟨𝑎|𝑏⟩ = [
𝑟𝑎
𝑖𝑎

]
𝑇

∙ [
𝑟𝐻 −𝑖𝐻
𝑖𝐻 𝑟𝐻

] ∙ [
𝑟𝑏
𝑖𝑏

] = ℛ𝑎𝑇 ∙ 𝑆 ∙ ℛ𝑏

Since

(𝑎|𝑏) = 𝑎∗ 𝐻 𝑏

it follows that matrix 𝑆 is given by

𝑆 = [
𝑟𝐻 −𝑖𝐻
𝑖𝐻 𝑟𝐻

] = [𝑟𝐻 𝑖𝐻𝑇

𝑖𝐻 𝑟𝐻
] = ℛ𝐻

which is a real, symmetric, and positive-definite matrix. We have thus

This stresses the important fact that an E-product is the real part of a H-product exactly if its matrix 𝑆 is

the real representation of the matrix 𝐻 of the H-product. In particular, the H-product associated to an

E-product is always unique.

We will say that the H-product (∙ | ∙) is associated to the E-product ⟨∙ | ∙⟩ and inversely. As we will see in

the next sub-chapter, this restriction makes the H-adjoint of any matrix 𝐴 coincide with its E-adjoint,

which is a key feature of the algebraic mechanic we need.

1.5 Adjoint-homomorphism and Adjoint-matrix

We now consider a homomorphism with matrix 𝐴 ∈ ℂ𝑚×𝑛 from vector space 𝑋 ≃ ℂ𝑛 to vector

space 𝑉 ≃ ℂ𝑚 :

𝑆 = ℛ𝐻

21

𝐴 ∶ 𝑋 ⟶ 𝑉

𝑥 ⟼ 𝐴𝑥

We assume that 𝑋 is endowed with a H-product (∙ | ∙)𝑋 with matrix 𝐻𝑋 and we assume that 𝑉 is

endowed with a H-product (∙ | ∙)𝑉 with matrix 𝐻𝑉. Then it can be shown that there exists exactly one

homomorphism of matrix 𝐴𝐻
†

𝐴𝐻
† ∶ 𝑉 ⟶ 𝑋

𝑣 ⟼ 𝐴𝐻
† ∙ 𝑣

such that for any 𝑥 ∈ 𝑋 and 𝑣 ∈ 𝑉 holds

(𝐴𝑥|𝑣)𝑉 = (𝑥|𝐴𝐻
† 𝑣)

𝑋

and it can be shown that the matrix 𝐴𝐻
† is uniquely given by

𝐴𝐻
† = 𝐻𝑋

−1 ∙ 𝐴∗ ∙ 𝐻𝑉

The matrix 𝐴𝐻
† is the adjoint of matrix 𝐴 with respect to (∙ | ∙)𝑋 and (∙ | ∙)𝑉 and the homomorphism

associated to 𝐴𝐻
† is called the adjoint homomorphism.

Let us furthermore endow 𝑋 with the E-product ⟨∙ | ∙⟩𝑋 = real(∙ | ∙)𝑋 and 𝑉 with the E-product ⟨∙ | ∙⟩𝑉 =

real(∙ | ∙)𝑉. Then it can be shown that there exists exactly one homomorphism of matrix 𝐴𝐸
†

𝐴𝐸
† ∶ 𝑉 ⟶ 𝑋

𝑣 ⟼ 𝐴𝐸
†𝑣

such that for any 𝑥 ∈ 𝑋 and 𝑣 ∈ 𝑉 holds

⟨𝐴𝑥|𝑣⟩𝑉 = ⟨𝑥|𝐴𝐸
†𝑣⟩

𝑋

The matrix 𝐴𝐸
† is the adjoint of matrix 𝐴 with respect to ⟨∙ | ∙⟩𝑋 and ⟨∙ | ∙⟩𝑉.

Because ⟨∙ | ∙⟩𝑋 is the real part of (∙ | ∙)𝑋 and ⟨∙ | ∙⟩𝑉 is the real part of (∙ | ∙)𝑉, it can be shown that the

matrices 𝐴𝐸
† and 𝐴𝐻

† are equal and we will write it 𝐴† :

22

𝐴† ∶= 𝐴𝐸
† = 𝐴𝐻

†

The adjoint matrix 𝐴† is thus given by

In the real representation, this translates to

The symbol 𝐴† is pronounced “A adjoint” or “𝐴 dagger” or “dagger 𝐴”.

We finally note that for a given homomorphism 𝐴, its adjoint homomorphism 𝐴† is independent of any

choice of basis. It is the unique homomorphism verifying

(𝐴𝑥|𝑣)𝑉 = (𝑥|𝐴† 𝑣)
𝑋

for any vector 𝑣 ∈ 𝑉 and 𝑥 ∈ 𝑋. Homomorphisms 𝐴 and 𝐴† can therefore be written free of any matrix.

1.6 Gradient and squared-norm functions

Given a real-valued function

𝑓(∙) ∶ ℂ𝑛 ⟶ ℝ

𝑥 = 𝑟𝑥 + 𝑗 𝑖𝑥 ⟼ 𝑓(𝑟𝑥 + 𝑗 𝑖𝑥)

we will say that 𝑓(∙) is differentiable if and only if the two functions from ℝ𝑛 to ℝ given by

𝑟𝑥 ⟼ 𝑓(𝑟𝑥 + 𝑗 𝑖𝑥) for any fixed value 𝑖𝑥

𝑖𝑥 ⟼ 𝑓(𝑟𝑥 + 𝑗 𝑖𝑥) for any fixed value 𝑟𝑥

are differentiable in the sense of real differentiation.

Given a real-valued function 𝑓(∙) defined on ℂ𝑛, we consider its real representation ℛ𝑓(∙) defined as

ℛ𝑓(∙) ∶ ℝ2𝑛 ⟶ ℝ

𝐴† = 𝐻𝑋
−1 ∙ 𝐴∗ ∙ 𝐻𝑉

Adjoint matrix in the

complex description

ℛ(𝐴†) = 𝑆𝑋
−1 ∙ ℛ𝐴𝑇 ∙ 𝑆𝑉

Adjoint matrix in the

real description

23

(𝑟𝑥, 𝑖𝑦) ⟼ ℛ𝑓(𝑟𝑥, 𝑖𝑥) ∶= 𝑓(𝑥) = 𝑓(𝑟𝑥 + 𝑗 𝑖𝑥)

The function ℛ𝑓(∙) is practically the same as the function 𝑓(∙). We only reformulated the definition

domain. It follows that 𝑓(∙) is differentiable if and only if ℛ𝑓(∙) is differentiable.

Let 𝑓(∙) be a differentiable function. We define the gradient of 𝑓(∙) in 𝑥 as the unique vector 𝑔𝑟𝑎𝑑𝑥(𝑓)

in 𝑋 ≃ ℂ𝑛 that satisfies for any ℎ ∈ 𝑋

⟨𝑔𝑟𝑎𝑑𝑥(𝑓)|ℎ⟩𝑋 = lim
𝜂⟶0
𝜂∈ℝ

𝑓(𝑥 + 𝜂 ∙ ℎ)

𝜂

Note that 𝜂 ∈ ℝ holds in the entire section. Using the chain rule we can write

lim
𝜂⟶0

𝑓(𝑥 + 𝜂 ∙ ℎ) − 𝑓(𝑥)

𝜂
= lim

𝜂⟶0

ℛ𝑓(𝑟𝑥 + 𝜂 ∙ 𝑟ℎ, 𝑖𝑥 + 𝜂 ∙ 𝑖ℎ) − ℛ𝑓(𝑟𝑥, 𝑖𝑥)

𝜂

= ∑
𝜕ℛ𝑓

𝜕𝑟𝑥𝑣
∙ 𝑟ℎ𝑣 +

𝜕ℛ𝑓

𝜕𝑖𝑥𝑣
∙ 𝑖ℎ𝑣

𝑛

𝑣=1

We define the nabla operators ∇𝑟𝑥 (pronounced “nabla are x”) and ∇𝑖𝑥 (pronounced “nabla i x”) as the

column vector operators

∇𝑟𝑥=

[

𝜕

𝜕𝑟𝑥1

⋮
𝜕

𝜕𝑟𝑥𝑛]

 and ∇𝑖𝑥=

[

𝜕

𝜕𝑖𝑥1

⋮
𝜕

𝜕𝑖𝑥𝑛]

It follows

lim
𝜂⟶0

𝑓(𝑥 + 𝜂 ∙ ℎ) − 𝑓(𝑥)

𝜂
= ∇𝑟𝑥ℛ𝑓𝑇 ∙ 𝑟ℎ + ∇𝑖𝑥ℛ𝑓𝑇 ∙ 𝑖ℎ = [

∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

]
𝑇

∙ [
𝑟ℎ
𝑖ℎ

]

= [
∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

]
𝑇

∙ 𝑆𝑋
−1 ∙ 𝑆𝑋 ∙ [

𝑟ℎ
𝑖ℎ

]

Because 𝑆𝑋 is symmetric, 𝑆𝑋
−1 is symmetric too. It follows

lim
𝜂⟶0

𝑓(𝑥 + 𝜂 ∙ ℎ) − 𝑓(𝑥)

𝜂
= (𝑆𝑋

−1 ∙ [
∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

])
𝑇

∙ 𝑆𝑋 ∙ [
𝑟ℎ
𝑖ℎ

]

We define

∇𝑓 ≔ ∇𝑟𝑥ℛ𝑓 + 𝑗 ∇𝑖𝑥ℛ𝑓

24

and we will pronounce it “nabla 𝑓”. In order to stress that the differenciation is done with respect to 𝑥

we will sometimes write ∇𝑥𝑓 and pronounce it “nabla X 𝑓”.

From

𝑆𝑋
−1 = ℛ(𝐻𝑋

−1) and [
∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

] = ℛ(∇𝑓)

we obtain

lim
𝜂⟶0

𝑓(𝑥 + 𝜂 ∙ ℎ) − 𝑓(𝑥)

𝜂
= (ℛ(𝐻𝑋

−1) ∙ ℛ(∇𝑓))
𝑇

∙ 𝑆𝑋 ∙ ℛ(ℎ) = ℛ(𝐻𝑋
−1 ∙ ∇𝑓)𝑇 ∙ 𝑆𝑋 ∙ ℛ(ℎ)

= ⟨𝐻𝑋
−1 ∙ ∇𝑓|ℎ⟩𝑋

Since that equation is true for any ℎ it follows that the gradient is given by

or in the real representation

By the previous construction, the gradient always exists and is always unique. Sometimes, the definition

of the gradient is the transpose of the Jacobian matrix, or the Jacobian matrix itself. We note that our

definition of the gradient differs from those definitions. Our modified definition takes into account the E-

product on 𝑋. This has the following two advantages.

It can be shown that the negative gradient −𝑔𝑟𝑎𝑑𝑥(𝑓) is parallel to the normalized direction of steepest

descent. In fact, the normalized direction of steepest descent is defined by

argmin
𝑝∈𝑋

{ lim
𝜂⟶0

𝑓(𝑥 + 𝜂 ∙ 𝑝)

𝜂
 𝑠. 𝑡. ‖𝑝‖𝑋,2 = 1}

which can be rewritten in the real description as

argmin
[𝑟𝑝,𝑖𝑝]𝑇

{[
∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

]
𝑇

∙ [
𝑟𝑝
𝑖𝑝] 𝑠. 𝑡. [

𝑟𝑝
𝑖𝑝]

𝑇

∙ 𝑆𝑋 ∙ [
𝑟𝑝
𝑖𝑝] = 1}

ℛ(𝑔𝑟𝑎𝑑𝑥(𝑓)) = 𝑆𝑋
−1 ∙ [

∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

]

Gradient in the

Real-description

𝑔𝑟𝑎𝑑𝑥(𝑓) = 𝐻𝑋
−1 ∙ ∇𝑓

Gradient in the

Complex-description

25

The solution to this optimization problem is given in [1] on page 476:

[
𝑟𝑝
𝑖𝑝] = −

𝑆𝑋
−1 ∙ [

∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

]

√[
∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

]
𝑇

∙ 𝑆𝑋
−1 ∙ [

∇𝑟𝑥ℛ𝑓
∇𝑖𝑥ℛ𝑓

]

= −
ℛ(𝑔𝑟𝑎𝑑𝑥(𝑓))

‖𝑔𝑟𝑎𝑑𝑥(𝑓)‖𝑋,2

The normalized steepest descent direction is thus

𝑝 = −
𝑔𝑟𝑎𝑑𝑥(𝑓)

‖𝑔𝑟𝑎𝑑𝑥(𝑓)‖𝑋,2

We now consider a vector space 𝑋 ≃ ℂ𝑛 with E-product ⟨∙ | ∙⟩𝑋 and associated H-product (∙ | ∙)𝑋 with

matrix 𝐻𝑋. We also consider a second vector space 𝑌 ≃ ℂ𝑚 with E-product ⟨∙ | ∙⟩𝑌 and associated

H-product (∙ | ∙)𝑌 with matrix 𝐻𝑌. We consider a homomorphism, which has matrix 𝑀, given by

𝑀 ∶ 𝑋 ⟶ 𝑌

𝑥 ⟼ 𝑀𝑥

and we consider 𝑦 ∈ 𝑌. The real-valued squared-norm function

𝑥 ⟼
1

2
‖ 𝑀𝑥 − 𝑦‖𝑌,2

2

is differentiable and its gradient is given by

𝑔𝑟𝑎𝑑𝑥(𝑓) = 𝐻𝑋
−1𝑀∗𝐻𝑌(𝑀𝑥 − 𝑦) ∈ 𝑋

where the expression for the adjoint can be substituted in order to obtain

In addition, we consider a further vector space 𝑍 ≃ ℂ𝑝 with E-product ⟨∙ | ∙⟩𝑍 and associated H-product

(∙ | ∙)𝑍 with matrix 𝐻𝑍. We also consider a homomorphism of matrix 𝜙 given by

𝜙 ∶ 𝑋 ⟶ 𝑍

Gradient of the

squared-norm

function

𝑔𝑟𝑎𝑑𝑥(𝑓) = 𝑀†(𝑀𝑥 − 𝑦) ∈ 𝑋

26

𝑥 ⟼ 𝜙 𝑥

and a vector 𝑧 ∈ 𝑍. Then the two-terms squared-norm function

𝑥 ⟼
1

2
‖ 𝑀 𝑥 − 𝑦‖𝑌,2

2 +
1

2
‖ 𝜙 𝑥 − 𝑧‖𝑍,2

2

is differentiable and its gradient is

𝑔𝑟𝑎𝑑𝑥(𝑓) = 𝑀†(𝑀𝑥 − 𝑦) + 𝜙†(𝜙 𝑥 − 𝑧) ∈ 𝑋

This establishes the form of gradient we will encounter in the conjugate gradient-descent algorithm that

is part of the ADMM-algorithm presented later.

Our proposed alternative definition of the gradient has therefore two advantages: the negative gradient

becomes parallel to the normalized steepest descent direction, and the gradient of a squared norm

function becomes similar to the familiar expression

𝑀∗(𝑀𝑥 − 𝑦)

which is the expression for the gradient in the case where the Euclidean products are canonical.

1.7 Orthogonal decompositions and orthogonal projections

Given an arbitrary vector space 𝑊 with E-product ⟨⋅ | ⋅⟩𝑊 with its induced 2-norm ‖⋅‖𝑊,2 and given a

non-empty, closed, convex set 𝐶 ⊆ 𝑊, we define the projection Π𝐶(𝑤) of any 𝑤 ∈ 𝑊 onto 𝐶 by

Π𝐶(𝑤) = argmin
𝑤′ ∈ 𝐶

1

2
‖𝑤′ − 𝑤‖𝑊,2

2

The existence and uniqueness of that projection is a result of convex analysis.

If 𝑃 is a vector subspace of 𝑊, the vector space 𝑊 can then be written as the direct sum of 𝑃 and its

orthogonal complement 𝑃⊥, which is defined with respect to the E-product ⟨⋅ | ⋅⟩𝑊:

𝑊 = 𝑃 ⨁ 𝑃⊥

It can be shown that

(𝑃⊥)⊥ = 𝑃

for any subspace 𝑃. Any vector 𝑤 ∈ 𝑊 can be uniquely decomposed as the orthogonal decomposition

27

𝑤 = 𝑤|| + 𝑤⊥

with 𝑤|| ∈ 𝑃 and 𝑤⊥ ∈ 𝑃⊥. The vector 𝑤|| is called the “orthogonal projection” of 𝑤 onto 𝑃 and 𝑤⊥ is

called the “orthogonal projection” of 𝑤 onto 𝑃⊥. It can be shown that

‖𝑤‖𝑊,2
2 = ‖𝑤||‖𝑊,2

2
+ ‖𝑤⊥‖𝑊,2

2

It also holds

𝑤|| = Π𝑃(𝑤) and 𝑤⊥ = Π𝑃⊥(𝑤)

If 𝐶 is an affine subspace of 𝑊, then there is a unique subspace 𝑃 of 𝑊 such that

𝐶 = 𝑐 + 𝑃 = {𝑐 + 𝑝 | 𝑝 ∈ 𝑃}

for any 𝑐 ∈ 𝐶. For any two 𝑐1 and 𝑐2 in 𝐶 holds thus

𝑐2 − 𝑐1 ∈ 𝑃

Let us chose a fixed 𝑐 ∈ 𝐶 and let be the following orthogonal decomposition of 𝑐 with respect to 𝑃 and

𝑃⊥ :

𝑐 = 𝑐|| + 𝑐⊥

with 𝑐|| ∈ 𝑃 and 𝑐⊥ ∈ 𝑃⊥. Since −𝑐|| ∈ 𝑃 it follows

𝑐 + (−𝑐||) = 𝑐⊥ ∈ 𝑃

and therefore

𝐶 = 𝑐⊥ + 𝑃

The set 𝐶 can be seen as the shift of subspace 𝑃 in a direction that is orthogonal to 𝑃. The vector 𝑐⊥ is in

fact the only vector of 𝑊 that is both in 𝐶 and in 𝑃⊥. In order to see that, we assume that 𝑐1,⊥ and 𝑐2,⊥

are both in 𝐶 and in 𝑃⊥. Then is

𝑐1,⊥ − 𝑐2,⊥ ∈ 𝑃 and 𝑐1,⊥ − 𝑐2,⊥ ∈ 𝑃⊥

hence

𝑐1,⊥ − 𝑐2,⊥ = 0

28

Therefore is 𝑐⊥ the only vector that is both in 𝐶 and 𝑃, independently of the choice of 𝑐.

Let be 𝑤 ∈ 𝑊 and let be 𝐶 an affine set given by

𝐶 = 𝑐⊥ + 𝑃

with associated subspace 𝑃 and 𝑐⊥ as defined above. Let be the orthogonal decomposition of 𝑤 with

respect to 𝑃 and 𝑃⊥ given by

𝑤 = 𝑤|| + 𝑤⊥

We define the orthogonal projection of any 𝑤 ∈ 𝑊 onto 𝐶 to be equal to 𝑤|| + 𝑐⊥. It can be shown that

this orthogonal projection is also given by Π𝐶(𝑤):

Π𝐶(𝑤) = 𝑤|| + 𝑐⊥

1.8 The decomposition associated to a homomorphism and the invertible restriction of a

homomorphism

In this section, we don’t assume any pre-established choice of basis on the vector spaces. Any

homomorphism is thus free of matrix and any vector free of coordinates.

Let be 𝐴 an arbitrary homomorphism between the vector space 𝑋 with E-product ⟨⋅ | ⋅⟩𝑋 and the vector

space 𝑉 with E-product ⟨⋅ | ⋅⟩𝑉 :

𝐴 ∶ 𝑋 ⟶ 𝑉

𝑥 ⟼ 𝐴𝑥

The adjoint homomorphism 𝐴† is therefore the unique linear map

𝐴† ∶ 𝑉 ⟶ 𝑋

𝑣 ⟼ 𝐴†𝑣

such that

⟨𝑣|𝐴𝑥⟩𝑉 = ⟨𝐴†𝑣|𝑥⟩
𝑋
 ∀𝑣 ∈ 𝑉, ∀ 𝑥 ∈ 𝑋

We write 𝑊⊥ for the orthogonal complement of a subspace 𝑊 with respect to the given E-product in its

parent space. It is a fundamental result from linear algebra, sometimes called the decomposition

associated to 𝐴, that the following is always true:

29

𝐼𝑚(𝐴†) = 𝐾𝑒𝑟(𝐴)⊥ and 𝐼𝑚(𝐴) = 𝐾𝑒𝑟(𝐴†)⊥

Because (𝑊⊥)⊥ = 𝑊 for any sub space 𝑊, it also holds

𝐼𝑚(𝐴†)
⊥

= 𝐾𝑒𝑟(𝐴) and 𝐼𝑚(𝐴)⊥ = 𝐾𝑒𝑟(𝐴†)

We now define the “restricted spaces”

 𝑋 ̅̅̅̅ ∶= 𝐼𝑚(𝐴†) = 𝐾𝑒𝑟(𝐴)⊥ ⊆ 𝑋

and

 𝑉 ̅̅̅̅ ∶= 𝐼𝑚(𝐴) = 𝐾𝑒𝑟(𝐴†)⊥ ⊆ 𝑉

This very important situation is depicted in figure1.

Figure 1: 𝐴 is a linear map from 𝑋 to 𝑉 and 𝐴† is its adjoint from 𝑉 to 𝑋. 𝐼𝑚(𝐴) is orthogonal to

𝐾𝑒𝑟(𝐴†) and 𝐼𝑚(𝐴†) is orthogonal to 𝐾𝑒𝑟(𝐴). The invertible restriction 𝐴 ̅ is an isomorphism

between 𝑋 ̅̅̅̅ and 𝑉 ̅̅̅̅ .

30

We define the homomorphism 𝐴 ̅ from 𝑋 ̅̅̅̅ to 𝑉 ̅̅̅̅ as the restriction of 𝐴 to 𝑋 ̅̅̅̅ and 𝑉 ̅̅̅̅ :

𝐴 ̅ ∶ 𝑋 ̅̅̅̅ ⟶ 𝑉 ̅̅̅̅

𝑥 ̅ ⟼ 𝐴 ̅𝑥 ̅ ∶= 𝐴𝑥 ̅ ∀𝑥 ̅ ∈ 𝑋 ̅̅̅̅ ⊆ 𝑋

It is also a fundamental result from linear algebra that 𝐴 ̅ is an invertible homomorphism (i.e. an

isomorphism) from 𝑋 ̅̅̅̅ to 𝑉 ̅̅̅̅ and we will call 𝐴 ̅ the “invertible restriction” of 𝐴. This can be seen as a

restatement of the well-known rank-theorem.

We note that

 𝑉 ̅̅̅̅ = 𝐼𝑚(𝐴) = 𝐼𝑚(𝐴 ̅)

Since 𝐴† is a linear map from 𝑉 to 𝑋 in its own right, it also have an invertible restriction 𝐴† ̅̅ ̅̅ from

𝐾𝑒𝑟(𝐴†)⊥ = 𝑉 ̅̅̅̅ to 𝐼𝑚(𝐴†) = 𝑋 ̅̅̅̅ . It follows that

 𝐴†̅̅ ̅̅ ∶ 𝑉 ̅̅̅̅ ⟶ 𝑋 ̅̅̅̅

�̅� ⟼ 𝐴†̅̅ ̅̅ �̅� ∶= 𝐴†�̅� ∀𝑣 ̅ ∈ 𝑉 ̅̅̅̅ ⊆ 𝑉

is also an isomorphism. We note that

 𝑋 ̅̅ ̅̅ = 𝐼𝑚(𝐴†) = 𝐼𝑚(𝐴† ̅̅ ̅̅ ̅)

We now want to describe the adjoint of the invertible restriction 𝐴 ̅† = (𝐴 ̅)†. For that purpose, we

consider the E-products on 𝑋 ̅̅̅̅ and 𝑉 ̅̅̅̅ naturally inherited from ⟨⋅ | ⋅⟩𝑋 and ⟨⋅ | ⋅⟩𝑉. We define the E-

product on 𝑋 ̅̅̅̅ by

⟨𝑥1̅̅ ̅|𝑥2̅̅ ̅⟩ 𝑋 ̅̅̅̅ ∶= ⟨𝑥1̅̅ ̅|𝑥2̅̅ ̅⟩𝑋 ∀ 𝑥1̅̅ ̅, 𝑥2̅̅ ̅ ∈ 𝑋 ̅̅̅̅ ⊆ 𝑋

and we define the E-product on 𝑉 ̅̅̅̅ by

⟨𝑣1̅̅ ̅|𝑣2̅̅ ̅⟩ 𝑉 ̅̅̅̅ ∶= ⟨𝑣1̅̅ ̅|𝑣2̅̅ ̅⟩𝑉 ∀ 𝑣1̅̅ ̅, 𝑣2̅̅ ̅ ∈ 𝑉 ̅̅̅̅ ⊆ 𝑉

The key statement about the adjoint of the invertible restriction 𝐴 ̅†is, that it is equal to the invertible

restriction of the adjoint 𝐴†̅̅̅̅ . The demonstration is as follows. By the definition of the adjoints, which

always exist and are always unique, it holds for any �̅� ∈ 𝑉 ̅̅̅̅ and �̅� ∈ 𝑋 ̅

⟨𝐴†̅̅̅̅ �̅�|𝑥 ̅⟩
 𝑋 ̅̅̅̅

= ⟨𝐴†̅̅̅̅ �̅�|𝑥 ̅⟩
𝑋

= ⟨𝐴†�̅�|𝑥 ̅⟩
𝑋

= ⟨�̅�|𝐴𝑥 ̅⟩𝑉 = ⟨�̅�|𝐴 ̅𝑥 ̅⟩𝑉 = ⟨�̅�|𝐴 ̅𝑥 ̅⟩ 𝑉 ̅̅̅̅ = ⟨𝐴 ̅†�̅�|𝑥 ̅⟩
 𝑋 ̅̅̅̅

31

It follows

𝐴 ̅† = 𝐴†̅̅̅̅

In particular is 𝐴 ̅† therefore invertible and it holds

𝐴 ̅†𝑣 ̅ = 𝐴†𝑣 ̅ ∀�̅� ∈ 𝑉 ̅̅̅̅

The bar-symbol on vectors such as 𝑣 ̅ has been used until now in order to designate a vector of the

restricted space such as 𝑉 ̅̅̅̅ . We now give the meaning of an operator to the bar ⋅ ̅.

For any 𝑥 ∈ 𝑋 we define the orthogonal decomposition with respect to Ker(𝐴) = 𝑋 ̅̅̅̅ ⊥ and its orthogonal

complement 𝑋 ̅̅̅̅ as

𝑥 = 𝑥 ̅ + 𝑥⊥

where 𝑥 ̅ ∈ 𝑋 ̅̅̅̅ and 𝑥⊥ ∈ 𝑋 ̅̅̅̅ ⊥ are uniquely determined. The vector 𝑥 ̅is the orthogonal projection of 𝑥 on

 𝑋 ̅̅̅̅ and 𝑥⊥ is the orthogonal projection of 𝑥 onto Ker(𝐴) = 𝑋 ̅̅̅̅ ⊥.

For any 𝑣 ∈ 𝑉 we define the orthogonal decomposition with respect to Ker(𝐴†) = 𝑉 ̅̅̅̅ ⊥ and its

orthogonal complement 𝑉 ̅̅̅̅ as

𝑣 = 𝑣 ̅ + 𝑣⊥

where 𝑣 ̅ ∈ 𝑉 ̅̅̅̅ and 𝑣⊥ ∈ 𝑉 ̅̅̅̅ ⊥ are uniquely determined. The vector 𝑣 ̅is the orthogonal projection of 𝑣 on

 𝑉 ̅̅̅̅ and 𝑣⊥ is the orthogonal projection of 𝑣 onto Ker(𝐴†) = 𝑉 ̅̅̅̅ ⊥.

It follows immediately that for every 𝑥 ∈ 𝑋 and every 𝑣 ∈ 𝑉 holds

𝐴 𝑥 = 𝐴 ̅𝑥 ̅ respectively 𝐴†𝑣 = 𝐴 ̅†𝑣 ̅

Moreover is 𝐴𝑥 ∈ Im(𝐴) = 𝑉 ̅̅̅̅ and is therefore equal to its own orthogonal projection 𝐴𝑥̅̅̅̅ . The same

remark holds for 𝐴†𝑣 that is equal to 𝐴†𝑣̅̅ ̅̅ ̅.

We have thus shown the following lemma, that we will use extensively in the subsection about

conjugate-gradient-descent algorithm.

32

Lemma of the invertible restriction

Let be 𝐴 a homomorphism from 𝑋 to 𝑉. Let be the restricted subspaces 𝑋 ̅̅̅̅ and 𝑉 ̅̅̅̅ as

previously defined. Let be 𝐴 ̅̅ ̅ the invertible restriction of 𝐴 and let be 𝐴 ̅† the invertible

restriction of 𝐴†.

Then, for any 𝑥 ∈ 𝑋 and its orthogonal projection 𝑥 ̅ onto 𝑋 ̅̅̅̅ , respectively for any 𝑣 ∈ 𝑉

and its orthogonal projection 𝑣 ̅ onto 𝑉 ̅̅̅̅ , it holds

 𝐴 𝑥 = 𝐴 ̅𝑥 ̅ = 𝐴𝑥̅̅̅̅ respectively 𝐴†𝑣 = 𝐴 ̅†𝑣 ̅ = 𝐴†𝑣̅̅ ̅̅ ̅

∎

33

2. The least-square problem

2.1 The least-square problem and its normal equation

Let 𝑉 a vector space, 𝑣 ∈ 𝑉 and let be the homomorphism

𝐴 ∶ 𝑋 ⟶ 𝑉

𝑥 ⟼ 𝑉𝑥

We are interested in solving the following least-square problem

The set 𝑆𝐿𝑆𝑄 is the set of solutions to this problem. It is the set of minimizers of the squared-norm

function

The symbol 𝑥# stands for any element of 𝑆𝐿𝑆𝑄 i.e. any minimizer of the squared norm function. The

least-square problem is to find a minimizer of the squared-norm function. We show as part of the

following that the infimum of that optimization problem is always reached i.e. 𝑆𝐿𝑆𝑄 is not empty. That

problem is thus feasible.

The squared-norm function is differentiable and convex. A necessary and sufficient condition for 𝑥 to be

a solution of least-square problem is therefore

∇𝑥 [
1

2
‖𝐴 𝑥 − 𝑣‖𝑉,2

2]

= 0

which can be shown to be equivalent to

𝐴∗𝐻𝑉(𝐴𝑥 − 𝑣) = 0

Multiplying both sides by 𝐻𝑋
−1 leads

𝐻𝑋
−1𝐴∗𝐻𝑉(𝐴𝑥 − 𝑣) = 0

𝑥# ∈ 𝑆𝐿𝑆𝑄 ≔ argmin
𝑥∈𝑋

1

2
‖𝐴 𝑥 − 𝑣‖𝑉,2

2

Least-Square Problem

𝑥 ⟶
1

2
‖𝐴 𝑥 − 𝑣‖𝑉,2

2

Squared-Norm Function

34

and substituting the adjoint of 𝐴 leads

𝐴†(𝐴𝑥 − 𝑣) = 0

which is equivalent to the normal equation

The solution set 𝑆𝐿𝑆𝑄 is therefore equal to the solution set of the normal equation. We now describe this

solution set.

We recall that the kernel of 𝐴 is given by

Ker(𝐴) ≔ {𝑥 ∈ 𝑋 | 𝐴 𝑥 = 0} ⊆ 𝑋

If it is not equal to {0}, any solution to the least-square problem (if it exist) is not unique. This follows

from the fact that if 𝑛 ∈ Ker(𝐴) and 𝑥# ∈ 𝑆𝐿𝑆𝑄, then is 𝑥# + 𝑛 a solution too since

1

2
‖𝐴 (𝑥# + 𝑛) − 𝑣‖

𝑉,2

2

=
1

2
‖𝐴 𝑥# − 𝑣‖

𝑉,2

2

 = min
𝑥∈𝑋

1

2
‖𝐴 𝑥 − 𝑣‖𝑉,2

2

We recall that the orthogonal projection of 𝑣 onto 𝑉 ̅̅̅̅ = Im(𝐴) is uniquely given by

𝑣 ̅ = argmin
𝑣′ ∈ Im(𝐴)

1

2
‖𝑣′ − 𝑣‖𝑉,2

2

If 𝑥 verifies 𝐴 𝑥 = 𝑣 ̅ then 𝑥 verifies

𝑥 ∈ argmin
𝑥′∈𝑋

1

2
‖𝐴 𝑥′ − 𝑣‖𝑉,2

2

and thus 𝑥 ∈ 𝑆𝐿𝑆𝑄. Inversely, if 𝑥 ∈ 𝑆𝐿𝑆𝑄 it must hold 𝐴 𝑥 = 𝑣 ̅. The solution set 𝑆𝐿𝑆𝑄 is therefore the

pre-image of 𝑣 ̅ by the map 𝐴 :

𝑆𝐿𝑆𝑄 = {𝑥 ∈ 𝑋 |𝐴 𝑥 = 𝑣 ̅}

In particular, the set 𝑆𝐿𝑆𝑄 of minimizers is not empty i.e. the minimum is reached.

Moreover, if 𝑥1
and 𝑥2

are two solutions, then holds

𝐴†𝐴𝑥 = 𝐴†𝑣

Normal Equation

35

𝐴 𝑥1
= 𝐴 𝑥2

= 𝑣 ̅

and therefore

𝐴 (𝑥1
− 𝑥2

#) = 0

which means

𝑥1
− 𝑥2

∈ Ker(𝐴)

The solution set 𝑆𝐿𝑆𝑄 is thus given by

𝑆𝐿𝑆𝑄 = 𝑥# + Ker(𝐴)

Where 𝑥# is an arbitrary particular solution. There is however a unique solution that is in 𝑋 ̅̅̅̅ . Let be 𝑥1

and 𝑥2
two points which are both in 𝑆𝐿𝑆𝑄 and 𝑋 ̅̅̅̅ . They are then equal to their own orthogonal

projection on 𝑋 ̅̅̅̅ :

𝑥1
= 𝑥1

#̅̅ ̅ and 𝑥2
= 𝑥2

#̅̅ ̅

As we have seen holds

𝑥1
= 𝑥2

+ 𝑛 with 𝑛 ∈ Ker(𝐴)

Taking the orthogonal projection on 𝑋 ̅̅̅̅ on both sides leads

𝑥1
#̅̅ ̅ = 𝑥2

#̅̅ ̅

hence

𝑥1
= 𝑥2

We will write 𝑥#̅̅ ̅ this unique solution which lies both in 𝑆 and in 𝑋 ̅̅̅̅ . This notation is well posed since 𝑥#̅̅ ̅

is in fact the orthogonal projection onto 𝑋 ̅̅̅̅ of any solution 𝑥# ∈ 𝑆. It can be shown that it is the unique

vector of 𝑆𝐿𝑆𝑄 with smallest 2-norm. This situation is described in figure 2.

36

Figure 2: 𝑆𝐿𝑆𝑄 is the solution set of the least-square problem. It is equal to 𝐴−1(�̅�), where 𝐴−1 stands for

the set-theoretical inverse of 𝐴 (i.e. 𝐴−1(�̅�) is the pre-image set of �̅� by 𝐴). The point �̅� is the orthogonal

projection of 𝑣 on 𝑉 ̅̅̅̅ .

37

Of note, the solution set of the least-square problem is never empty, while the solution set of the exact

equation

may be empty. If that equation has a solution, then it is equivalent to the least-square problem and its

solution set is equal to 𝑆𝐿𝑆𝑄. This happens if and only if 𝑣 ∈ Im(𝐴).

We will call 𝐴𝑝𝑖𝑛𝑣 the pseudo-inverse (or Moor-Penrose pseudo-inverse) of 𝐴:

𝐴𝑝𝑖𝑛𝑣: 𝑉 ⟶ 𝑋

𝑤 ⟼ 𝐴𝑝𝑖𝑛𝑣𝑤 , ∀ 𝑤 ∈ 𝑉

The existence and uniqueness of 𝐴𝑝𝑖𝑛𝑣 follows from the defining properties of the pseudo-invers. It

holds in particular

𝑥#̅̅ ̅ = 𝐴𝑝𝑖𝑛𝑣 𝑣

The solution 𝑥#̅̅ ̅ is therefore always related to 𝑣 by the pseudo inverse of 𝐴. We distinguish the following

cases:

- In the special case where 𝐴 has full column-rank (i.e. 𝐴 is injective in Im(𝐴), the solution to the

least-square problem is unique, all columns of 𝐴 are linearly independent, the rank of 𝐴 equals

its column-rank) is the unique solution of least-square problem given by

𝑥#̅̅ ̅ = (𝐴†𝐴)
−1

𝐴†𝑣

 and it holds

𝐴𝑝𝑖𝑛𝑣 = (𝐴†𝐴)
−1

𝐴†

- In the special case where 𝐴 has full raw-rank (i.e. 𝐴 is surjective on 𝑉, there is a solution to the

exact equation, all raws of 𝐴 are linearly independent, the rank of 𝐴 equals its raw-rank) the

solution to the least-square problem with least-2-norm is given by

𝑥#̅̅ ̅ = 𝐴†(𝐴𝐴†)
−1

𝑣

 and it holds

𝐴𝑥 = 𝑣

Exact Equation

38

𝐴𝑝𝑖𝑛𝑣 = 𝐴†(𝐴𝐴†)
−1

- In the special case where 𝐴 has full rank (i.e. 𝐴 is bijective on 𝑉, there is a unique solution to the

exact equation, all raws and columns of 𝐴 are linearly independent, the rank of 𝐴 equals its raw-

rank and its column-rank) is 𝐴 invertible and the unique solution to the least-square problem is

𝑥#̅̅ ̅ = 𝐴−1𝑣

 and it holds

𝐴𝑝𝑖𝑛𝑣 = 𝐴−1

- In practice however, we rarely encounter one of these special cases and the pseudo-inverse is

given, for example, by the general formulas

𝐴𝑝𝑖𝑛𝑣 = lim
𝜅→0

(𝐴†𝐴 + 𝜅 𝑖𝑑𝑋)
−1

𝐴† = lim
𝜅→0

𝐴†(𝐴𝐴† + 𝜅 𝑖𝑑𝑌)
−1

Informal note: There is some exceptional cases (we will encounter at least one) where some of

the previous formulas can be applied in practice for MRI reconstruction, if 𝐴 is simple enough. But

usually, these expressions are of no practical interest for MRI reconstruction because the linear

systems we encounter are usually so big that it is out of question to perform a matrix inversion by

an exact method. We will instead approximate the pseudo inverse by a truncated iterative

method. In any case, these expressions of the pseudo-inverse remain of theoretical interest and

are important to understand some scientific articles.

39

2.2 The invertible normal equation associated to the least-square problem

Let be the least-square problem

𝑥# ∈ 𝑆𝐿𝑆𝑄 ∶= argmin
𝑥

1

2
‖𝐴𝑥 − 𝑣‖𝑉,2

2

We consider 𝑣 ̅ to be the orthogonal projection in of 𝑣 ∈ 𝑉 onto 𝑉 ̅̅̅̅ = Im(𝐴) :

𝑣 ̅ = argmin
𝑣′∈ 𝑉 ̅̅̅̅

1

2
‖𝑣 − 𝑣′‖𝑉,2

2

It follows that 𝑥 is solution of the least-square problem exactly if it is solution of

𝐴𝑥 = 𝑣 ̅

Summary:

The set of minimizers of the squared-norm function

𝑆𝐿𝑆𝑄 = argmin
𝑥∈𝑋

1

2
‖𝐴 𝑥 − 𝑣‖𝑉,2

2

is the solution set of the least-square problem and is the pre-image of 𝑣 ̅ by the map 𝐴. It

is a non-empty affine space given by

𝑆𝐿𝑆𝑄 = 𝑥#̅̅ ̅ + Ker(𝐴)

where 𝑥#̅̅ ̅ is the unique solution that belongs to 𝑋 ̅̅̅̅ , is the least 2-norm vector of 𝑆𝐿𝑆𝑄, and

is given by the (Moor-Penrose) pseudo invers.

To the least-square problem, we associate the normal equation

𝐴†𝐴𝑥 = 𝐴†𝑣

which solution set is 𝑆𝐿𝑆𝑄, and the exact equation

𝐴𝑥 = 𝑣

which solution is 𝑆𝐿𝑆𝑄 if and only if 𝑣 ∈ Im(𝐴), and is empty if not.

40

The solution set of that equation is

𝑥#̅̅ ̅ + Ker(𝐴)

Where 𝑥#̅̅ ̅ ∈ 𝑆𝐿𝑆𝑄 is the least 2-norm solution.

As defined earlier, the restricted space 𝑋 ̅ ⊆ 𝑋 is the orthogonal complement to Ker(𝐴) :

 𝑋 ̅̅̅̅ ∶= Ker(𝐴)⊥ ⊆ 𝑋

And the restricted space 𝑉 ̅̅̅̅ ⊆ 𝑉 is the image of 𝐴:

 𝑉 ̅̅̅̅ ∶= Im(𝐴)

We consider 𝐴 ̅̅ ̅, the restriction of 𝐴 to the sub spaces 𝑋 ̅̅̅̅ and 𝑉 ̅̅̅̅ :

 𝐴 ̅̅ ̅: 𝑋 ̅̅̅̅ ⇢ 𝑉 ̅̅̅̅ ⊆ 𝑉

𝑥 ̅ ⟼ 𝐴 ̅𝑥 ̅

where 𝑉 ̅̅̅̅ contains 𝑣 ̅, the orthogonal projection 𝑣 onto 𝑉 ̅̅̅̅ . We have seen that 𝐴 ̅̅ ̅ is invertible from 𝑋 ̅̅̅̅

to 𝑉 ̅̅̅̅ . The invertible exact equation

has thus a single solution because it is implicitly meaned that 𝑥 ̅ is in the definition domain of 𝐴 ̅, which is

 𝑋 ̅̅̅̅ . It is straight forward to show that this single solution is 𝑥#̅̅ ̅, the lest 2-norm solution of the

least-square problem.

We have seen that 𝐴 ̅† is invertible too. The exact invertible equation is therefore fully equivalent to the

invertible normal equation

The single solution of that equation is 𝑥#̅̅ ̅ and can be written as

𝑥#̅̅ ̅ = 𝐴 ̅̅ ̅−1𝑣 ̅

 𝐴 ̅̅ ̅𝑥 ̅ = 𝑣 ̅

Invertible
Exact

Equation

𝐴 ̅†𝐴 ̅𝑥 ̅ = 𝐴 ̅†𝑣 ̅

Invertible

Normal

Equation

41

It is also the single solution of the least-square problem which is both in 𝑋 ̅̅̅̅ and 𝑆𝐿𝑆𝑄. The solution 𝑥#̅̅ ̅ is

the orthogonal projection on 𝑋 ̅̅̅̅ of any element any 𝑥# ∈ 𝑆𝐿𝑆𝑄.

Because 𝐴 ̅ is invertible, the homomorphism 𝐴 ̅†𝐴 ̅ is hermitian and positive-definite, and of course

invertible. The invertible normal equation can thus be solved with the conjugate-gradient algorithm

(CGD-algorithm) in order to lead the unique solution 𝑥#̅̅ ̅ in a finite number of steps 𝑖𝑚𝑎𝑥 ≤ dim (𝑋 ̅̅̅̅) ≤

dim (𝑋). The obtained sequence from the CGD-algorithm can only be written abstractly and cannot be

evaluated in practice. The key to solve that issue is to perform the CGD-algorithm with homomorphism

𝐴†𝐴 instead of 𝐴 ̅†𝐴 ̅ and with data vector 𝑣 instead of 𝑣 ̅. We show in the following section that the

result is a solution of the least-square problem of the form

𝑥# = 𝑥#̅̅ ̅ + 𝑥0,⊥

where 𝑥0 is the initial value of the CGD-algorithm and 𝑥0,⊥ ∈ Ker(𝐴) is its orthogonal projection on

𝐾𝑒𝑟(𝐴). We also show that the solution 𝑥# obtained by the CGD-method is the orthogonal projection of

the initial value 𝑥0 onto the affine solution set 𝑆𝐿𝑆𝑄 = 𝑥#̅̅ ̅ + Ker(𝐴).

2.3 Conjugate-gradient-descent method for the least-square problem

In their original article of 1952 [2], Stiefel and Hestenes presented two iterative algorithms (and some

variants), both called “conjugate-gradient-descent method” (CGD-method or CGD-algorithm). The

authors chose to describe the methods in term of matrices and coordinate vectors but we will use a

basis-free description in the following subsection. We will write homomorphism free from any basis and

vector free of coordinates.

The first method is to solve the invertible linear equation

𝑄𝑥 = 𝑞

where 𝑄 is an homomorphism from a real vector space 𝐿 to itself (𝑄 is an endomorphism) that is

symmetric and positive-definite (and thus invertible), and where 𝑥, 𝑞 ∈ 𝐿. The method is described in

term of matrices and coordinate vector in ℝ𝑛 and it is considered that an orthogonal basis on 𝑋 is used.

That means that the norm is the canonical 2-norm ‖∙‖ℝ𝑛,2 on ℝ𝑛 given by

‖𝑥‖ℝ𝑛,2 = √⟨𝑥|𝑥⟩ℝ𝑛

where the canonical Euclidean-product ⟨∙ | ∙⟩ℝ𝑛 is given by

42

⟨𝑥|𝑥⟩ℝ𝑛 = 𝑥𝑇 ∙ 𝑥

and where 𝑥 is to be read as a coordinate vector lying in ℝ𝑛. In that context, 𝑄 is read as a matrix and its

adjoint verifies 𝑄† = 𝑄𝑇.

However, the method and all demonstrations in that article can be extended in a straight forward way to

the case of an arbitrary E-product. We don’t need to choose any basis to describe that method. We have

simply a vector space 𝐿 with a 2-norm ‖∙‖𝐿,2 induced by the E-product ⟨⋅ | ⋅⟩𝐿. The homomorphism 𝑄 can

be written free from any basis and the matrix 𝑄∗ has to be replaced by the matrix-free homomorphism

𝑄†. All vectors can also written in a basis-free way i.e. without use of coordinates. Moreover, the original

description of the CGD-algorithm on a real Euclidean vector spaces is perfectly adapted to our problem

since our vector spaces of interest are also real Euclidean vector spaces (and not complex Hermitian). In

order to match our naming convention, we will name that method the “CGD-algorithm (for the invertible

exact equation)”. The first CGD-algorithm presented by Stiefel and Hestenes in their article solves

invertible exact equation and reads as follows:

CGD-algorithm (for the invertible exact equation):

 INITIALIZE

(a) Choose an 𝑥0 ∈ 𝐿

(b) Initialize the residual 𝑟0 = 𝑞 − 𝑄 𝑥0 ∈ 𝐿

(c) Initialize the search direction 𝑝0 = 𝑟0 ∈ 𝐿

 DO FOR i = 0, 1, 2, …

(d) Evaluate the line-search parameter : 𝑎𝑖 =
‖𝑟𝑖‖𝐿,2

2

⟨𝑝𝑖|𝐴 𝑝𝑖⟩𝐿
∈ ℝ

(e) Update the approximated solution : 𝑥𝑖+1 = 𝑥𝑖 + 𝑎𝑖 𝑝𝑖 ∈ 𝐿

(f) Update the residual: 𝑟𝑖+1 = 𝑟𝑖 − 𝑎𝑖 𝑄 𝑝𝑖 ∈ 𝐿

(g) Update the b-parameter: 𝑏𝑖 =
‖𝑟𝑖+1‖𝐿,2

2

‖𝑟𝑖‖𝐿,2
2

(h) Update the search direction: 𝑝𝑖+1 = 𝑟𝑖+1 + 𝑏𝑖 𝑝𝑖 ∈ 𝐿

 UNTIL ‖𝑟𝑖+1‖𝐿,2
2 = 0

43

The second method described in the article is a method to solve the special case where the equation to

solve is normal, which means

𝑄 = 𝐵†𝐵 and 𝑞 = 𝐵†𝑏

for some 𝐵 invertible from a space 𝐿 to a linear space 𝑅 and where 𝑏 ∈ 𝑅 is a vector. It is sated in the

article that this second method is fully equivalent to the first method applied to homomorphism 𝑄 and

vector 𝑞, but its advantage is that the original data 𝐵, 𝐵† and 𝑏 are used instead of 𝑄 and 𝑞, which is

better suited numerically. This normal equation above becomes equivalent to the invertible normal

equation by setting

𝐵 = 𝐴 ̅ 𝑏 = 𝑣 ̅ 𝐿 = 𝑋 ̅̅̅̅ 𝑅 = 𝑉 ̅̅̅̅

The invertible normal equation can thus be solved with the second CGD-algorithm presented in the

article. We will therefore call it the “CGD-algorithm (for the invertible normal equation)”. It reads as

follows:

CGD-algorithm (for invertible normal equation):

 INITIALIZE

(i) Choose an 𝑥0̅̅ ̅ ∈ 𝑋 ̅̅̅̅

(j) Initialize the residual 𝑟0̅̅ ̅ = 𝑣 ̅ − 𝐴 ̅ 𝑥0̅̅ ̅ ∈ 𝑉 ̅̅̅̅

(k) Evaluate the search direction 𝑝0̅̅ ̅ = 𝐴 ̅† 𝑟0̅̅ ̅ ∈ 𝑋 ̅̅̅̅

 DO FOR i = 0, 1, 2, …

(l) Evaluate the line-search parameter : 𝑎𝑖 ̅̅ ̅ =
‖𝐴 ̅†𝑟�̅�‖𝑋 ̅̅ ̅,2

2

‖𝐴 ̅ 𝑝𝑖 ̅̅̅̅ ‖
𝑉 ̅̅̅,2
2 ∈ ℝ

(m) Update the approximated solution : 𝑥𝑖+1̅̅ ̅̅ ̅̅ = 𝑥�̅� + 𝑎�̅� 𝑝𝑖 ̅̅ ̅ ∈ 𝑋 ̅̅̅̅

(n) Update the residual: 𝑟𝑖+1̅̅ ̅̅ ̅ = 𝑟�̅� − 𝑎𝑖 ̅̅ ̅ 𝐴 ̅𝑝𝑖 ̅̅ ̅ ∈ 𝑉 ̅̅̅̅

(o) Update the b-parameter: 𝑏�̅� =
‖𝐴 ̅†𝑟𝑖+1̅̅ ̅̅ ̅̅ ‖

𝑋 ̅̅ ̅,2

2

‖𝐴 ̅†𝑟�̅�‖𝑋 ̅̅ ̅,2

2

(p) Update the search direction: 𝑝𝑖+1̅̅ ̅̅ ̅̅ = 𝐴 ̅†𝑟𝑖+1̅̅ ̅̅ ̅ + 𝑏�̅� 𝑝𝑖 ̅̅ ̅ ∈ 𝑉 ̅̅̅̅

 UNTIL ‖𝑟𝑖+1̅̅ ̅̅ ̅‖𝑉 ̅,2
2 = 0

44

By virtue of the CGD-algorithm properties, the above iterations generate sequence

𝑥0̅̅ ̅, 𝑥1̅̅ ̅, 𝑥2̅̅ ̅, … 𝑥𝑖𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅ with 𝑥𝑖𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅ = 𝑥#̅̅ ̅ and 𝑖𝑚𝑎𝑥 ≤ dim (𝑋 ̅̅̅̅) ≤ dim (𝑋)

We now rewrite this algorithm by replacing all unknown quantities by quantities we can evaluate in

practice. We obtain thus a new algorithm that generates a different sequence. For some reason that will

become clear in a few lines, we will call it the “CGD-algorithm (for least-square problem)”.

45

CGD-algorithm (for least-square problem):

 INITIALIZE

(a) Choose an 𝑥0 ∈ 𝑋

(b) Evaluate the residual 𝑟0 = 𝑣 − 𝐴 𝑥0 ∈ 𝑉

(c) Evaluate the search direction 𝑝0 = 𝐴† 𝑟0 ∈ 𝑋

 DO

(d) Evaluate the line-search parameter : 𝑎𝑖 =
‖𝐴†𝑟𝑖‖𝑋,2

2

‖𝐴 𝑝𝑖‖𝑉,2
2 ∈ ℝ

(e) Update the approximated solution : 𝑥𝑖+1 = 𝑥𝑖 + 𝑎𝑖 𝑝𝑖 ∈ 𝑋

(f) Update the residual: 𝑟𝑖+1 = 𝑟𝑖 − 𝑎𝑖 𝐴𝑝𝑖 ∈ 𝑉

(g) Update the b-parameter: 𝑏𝑖 =
‖𝐴†𝑟𝑖+1‖

𝑋,2

2

‖𝐴†𝑟𝑖‖𝑋,2

2

(h) Update the search direction: 𝑝𝑖+1 = 𝐴†𝑟𝑖+1 + 𝑏𝑖 𝑝𝑖 ∈ 𝑋

 UNTIL ‖𝐴†𝑟𝑖+1‖𝑋,2

2
= 0

Given any 𝑥0 ∈ 𝑋, we decompose it as

𝑥0 = 𝑥0,⊥ + 𝑥0̅̅ ̅

and we decompose 𝑣 as

𝑣 = 𝑣 ⊥ + 𝑣 ̅

We will now show that the sequence defined by the CGD-algorithm (for least-square problem) is as well

defined as the sequence defined by the CGD-algorithm (for invertible normal equation) by showing the

following theorem:

Theorem:

For all 𝑖 = 1,… , 𝑖𝑚𝑎𝑥 holds

𝑥𝑖 = 𝑥�̅� + 𝑥0,⊥

 𝑟𝑖 = 𝑟�̅� + 𝑣 ⊥

𝑝𝑖 = 𝑝�̅�

𝑎𝑖 = 𝑎�̅�

𝑏𝑖 = 𝑏�̅�

46

Proof by induction.

We make in this proof an extensive use the “Lemma of the invertible restriction”. We begin with 𝑖 = 0.

Step (a) simply consist of an initial choice for 𝑥0 and

𝑥0 = 𝑥0̅̅ ̅ + 𝑥0,⊥

is true by definition.

In step (b), be evaluate

 𝑟0 = 𝑣 − 𝐴 𝑥0 ∈ 𝑉

We note that

 𝑟0 = 𝑣 − 𝐴 𝑥0 = 𝑣 ̅ + 𝑣 ⊥ − 𝐴 (𝑥0̅̅ ̅ + 𝑥0,⊥) = 𝑣 ̅ + 𝑣 ⊥ − 𝐴 ̅̅ ̅𝑥0̅̅ ̅ = 𝑟0̅̅ ̅ + 𝑣 ⊥

In step (c), we evaluate

𝑝0 = 𝐴† 𝑟0 ∈ 𝑋

We note that

𝑝0 = 𝐴† 𝑟0 = 𝐴† (𝑟0̅̅ ̅ + 𝑣 ⊥) = 𝐴 ̅† 𝑟0̅̅ ̅ = 𝑝0̅̅ ̅

We have thus shown for 𝑖 = 0 that

𝑥𝑖 = 𝑥�̅� + 𝑥0,⊥ and 𝑟𝑖 = 𝑟�̅� + 𝑣 ⊥ and 𝑝𝑖 = 𝑝�̅�

We now assume by induction that this is true for a given 𝑖.

For step (d) we evaluate

𝑎𝑖 =
‖𝐴† 𝑟𝑖‖𝑋,2

2

‖𝐴 𝑝𝑖‖𝑉,2
2 ∈ ℝ

We note that

‖𝐴† 𝑟𝑖‖𝑋,2

2
= ‖𝐴† (𝑟�̅� + 𝑣 ⊥)‖

𝑋,2

2
= ‖𝐴 ̅† 𝑟�̅�‖𝑋,2

2
= ‖𝐴 ̅† 𝑟𝑖 ̅‖𝑋 ̅,2

2

and similarly

47

‖𝐴 𝑝𝑖‖𝑉,2
2 = ‖𝐴 𝑝�̅�‖𝑉,2

2 = ‖𝐴 ̅ 𝑝𝑖 ̅̅ ̅‖𝑉,2
2 = ‖𝐴 ̅ 𝑝𝑖 ̅̅ ̅‖𝑉 ̅,2

2

It follows

𝑎𝑖 = 𝑎�̅�

For step (e) we evaluate

𝑥𝑖+1 = 𝑥𝑖 + 𝑎𝑖 𝑝𝑖 ∈ 𝑋

We note that

𝑥𝑖+1 = 𝑥𝑖 + 𝑎𝑖 𝑝𝑖 = 𝑥�̅� + 𝑥0,⊥ + 𝑎�̅� 𝑝𝑖 ̅̅ ̅ = 𝑥𝑖+1̅̅ ̅̅ ̅̅ + 𝑥0,⊥

In step (f) we evaluate

𝑟𝑖+1 = 𝑟𝑖 − 𝑎𝑖 𝐴𝑝𝑖 ∈ 𝑉

We note that

𝑟𝑖+1 = 𝑟𝑖 − 𝑎𝑖 𝐴𝑝𝑖 = 𝑟�̅� + 𝑣 ⊥ − 𝑎𝑖 ̅̅ ̅ 𝐴 ̅𝑝𝑖 ̅̅ ̅ = 𝑟𝑖+1̅̅ ̅̅ ̅ + 𝑣 ⊥

In step (g) we evaluate

𝑏𝑖 =
‖𝐴†𝑟𝑖+1‖𝑋,2

2

‖𝐴†𝑟𝑖‖𝑋,2
2

We note that

𝑏𝑖 =
‖𝐴†𝑟𝑖+1‖𝑋,2

2

‖𝐴†𝑟𝑖‖𝑋,2
2 =

‖�̅�†𝑟𝑖+1̅̅ ̅̅ ̅‖
𝑋,2

2

‖�̅�†𝑟�̅�‖𝑋,2
2 =

‖�̅�†𝑟𝑖+1̅̅ ̅̅ ̅‖
�̅�,2

2

‖�̅�†𝑟�̅�‖�̅�,2
2 = 𝑏�̅�

In step (h) we evaluate

𝑝𝑖+1 = 𝐴†𝑟𝑖+1 + 𝑏𝑖 𝑝𝑖 ∈ 𝑉

We note that

𝑝𝑖+1 = 𝐴†𝑟𝑖+1 + 𝑏𝑖 𝑝𝑖 = 𝐴 ̅†𝑟𝑖+1̅̅ ̅̅ ̅ + 𝑏�̅� 𝑝𝑖 ̅̅ ̅ = 𝑝𝑖+1̅̅ ̅̅ ̅̅

∎

48

Corollary:

Let be 𝐴 any homomorphism from 𝑋 to 𝑉 and let be 𝑣 ∈ 𝑉. Then, the CGD-algorithm (for

least square problems) converges to a solution of the least-square problem

𝑥# ∈ 𝑆𝐿𝑆𝑄 = argmin
𝑥∈𝑋

1

2
‖𝐴𝑥 − 𝑣‖𝑉,2

2

in a number of steps 𝑖𝑚𝑎𝑥 ≤ dim (𝑋) and it holds

𝑥# = 𝑥𝑖𝑚𝑎𝑥
= 𝑥#̅̅ ̅ + 𝑥0,⊥

Corollary:

By setting the initial value 𝑥0 = 0, the CGD-algorithm (for least square problems) leads to

the solution

𝑥# = 𝑥#̅̅ ̅ = 𝐴𝑝𝑖𝑛𝑣𝑣

and realizes therefore the (Moore-Penrose) pseudo-inverse of 𝑣.

We note that for the CGD-algorithm (for least square problems), the residual

 𝑟𝑖 = 𝑟�̅� + 𝑣 ⊥

is possibly never 0 because of the contribution of 𝑣 ⊥. The stopping condition is instead ‖𝐴†𝑟𝑖+1‖𝑋,2

2
= 0

which is equivalent to ‖𝑟𝑖+1̅̅ ̅̅ ̅‖𝑉 ̅,2
2 = 0.

We now show that the solution

𝑥# = 𝑥𝑖𝑚𝑎𝑥
= 𝑥#̅̅ ̅ + 𝑥0,⊥

is the orthogonal projection of the initial value 𝑥0 onto the solution set 𝑆𝐿𝑆𝑄 = 𝑥#̅̅ ̅ + Ker(𝐴), as

described in figure 3.

49

Lemma of the orthogonal projection by CGD-algorithm

Given a point 𝑥0 ∈ 𝑋, the CGD-algorithm (for least square problems) realizes the

orthogonal projection of 𝑥0 on the affine space 𝑆𝐿𝑆𝑄 by choosing 𝑥0 as initial value:

𝑥# = Π𝑆(𝑥0)

The orthogonal projection of 𝑥0 onto 𝑆 is then given by

Π𝑆(𝑥0) = argmin
𝑥′∈𝑆

1

2
‖𝑥′ − 𝑥0‖𝑋,2

2

= argmin
𝑥′∈𝑆

1

2
‖𝑥′ − 𝑥0̅̅ ̅ − 𝑥0,⊥ ‖

𝑋,2

2

= 𝑥#̅̅ ̅ + argmin
𝑥⊥

′ ∈𝐾𝑒𝑟(𝐴)

1

2
‖𝑥#̅̅ ̅ + 𝑥⊥

′ − 𝑥0̅̅ ̅ − 𝑥0,⊥ ‖
𝑋,2

2

= 𝑥#̅̅ ̅ + argmin
𝑥⊥

′ ∈𝐾𝑒𝑟(𝐴)

1

2
‖𝑥#̅̅ ̅ − 𝑥0̅̅ ̅ ‖

𝑋,2

2
+

1

2
‖𝑥⊥

′ − 𝑥0,⊥ ‖
𝑋,2

2

= 𝑥#̅̅ ̅ + 𝑥0,⊥ = 𝑥#

We have shown:

We highlight finally the link between the search direction 𝑝𝑖 and the gradient of the squared-norm

function

𝑥 ⟼
1

2
‖𝐴𝑥 − 𝑣‖𝑉,2

2

It can be verified that the residuals all verify for all 𝑖 = 0,… , 𝑖𝑚𝑎𝑥

𝑟𝑖 = 𝑣 − 𝐴𝑥𝑖

The search direction 𝑝𝑖+1 verifies

𝑝𝑖+1 = 𝐴†𝑟𝑖+1 + 𝑏𝑖 𝑝𝑖

The first term is therefore

50

𝐴†𝑟𝑖+1 = 𝐴†(𝑣 − 𝐴𝑥𝑖+1) = −𝐴†(𝐴𝑥𝑖+1 − 𝑣) = −𝑔𝑟𝑎𝑑𝑥(
1

2
‖𝐴𝑥 − 𝑣‖𝑉,2

2)|𝑥=𝑥𝑖+1

and is thus the negative gradient of squared-norm function evaluated in 𝑥𝑖+1. The second term is a

correction that implies the 𝐴†𝐴-orthogonality of all search directions

⟨𝐴†𝐴𝑝𝑖|𝑝𝑗⟩𝑋 = 0 for 𝑖 ≠ 𝑗

hence the name “conjugate-gradient-descent”.

Figure 3: The CGD-algorithm (for least-square problems) takes 𝑥0 as initial value and performs the

orthogonal projection of 𝑥0 on the solution set 𝑆𝐿𝑆𝑄 of the least-square problem leading to a

minimizer 𝑥# of the squared-norm-function. Note that 𝑥#̅̅ ̅ is the least-2-norm vector of 𝑆. Choosing

𝑥0 = 0 leads to the solution 𝑥#̅̅ ̅ and the CGD-algorithm realizes in that case the evaluation of the

More-Penrose pseudo-inverse in 𝑣.

51

Informal Note: In practice, in MRI reconstructions, many implementations of the CGD-algorithm

(for least square problems) are actually inexact because the line-search 𝑎-parameter is not

computed exactly but with inexact methods instead. The author can only hypostatize about the

reason for that. But it may be that there is some errors in those implementations that propagate

in the computation of the 𝑎-parameter and therefore gives a wrong value. A heuristic and inexact

evaluation of the a-parameter must then be done in order to restore the descent property of the

algorithm. If you allow a point of sarcasm, the persons implementing such wrong algorithms also

claim that the CGD-algorithm is simple to implement and can be written in 4 lines. It seems

therefore that in the real world, even very simple things must be considered very carefully.

52

3. The generalized-LASSO problem

3.1 The 1-norm and the Soft-thresholding
If 𝑧 ∈ ℂ𝑛 we define the 1-norm of 𝑧 as

‖𝑧‖ℂ𝑛,1 ≔ ∑|𝑟𝑧𝑘|

𝑛

𝑘=1

+ |𝑖𝑧𝑘|

For ℛ𝑧 ∈ ℝ2𝑛 we define the 1-norm of ℛ𝑧 as

‖ℛ𝑧‖ℝ2𝑛,1 ≔ ∑|(ℛ𝑧)𝑘|

2𝑛

𝑘=1

= ∑|𝑟𝑧𝑘|

𝑛

𝑘=1

+ |𝑖𝑧𝑘| = ‖𝑧‖ℂ𝑛,1

We note that we don’t make use of the conventional 1-norm on ℂ𝑛 given by

∑|𝑟𝑧𝑘 + 𝑗 𝑖𝑧𝑘|

𝑛

𝑘=1

The definition of the 1-norm makes use of specific coordinates and in thus intrinsically linked to the

choice of a vector basis.

For the need of our theory, we define the component dependent weighted 1-norm on a vector space

𝑍 ≃ ℂ𝑛 by

‖𝑧‖𝑍,1 ≔ ‖𝐻𝑍 𝑧‖ℂ𝑛,1 = ‖𝐻𝑍 𝑟𝑧‖ℝ𝑛,1 + ‖𝐻𝑍 𝑖𝑧‖ℝ𝑛,1

where 𝐻𝑍 is a diagonal matrix of positive weights Δ𝑍1, … , Δ𝑍𝑁 given by

𝐻𝑍 = [
Δ𝑍1 0 0
0 ⋱ 0
0 0 Δ𝑍𝑛

]

It is therefore a hermitian matrix and is naturally associated to the E-product on 𝑍 given by

⟨𝑧1|𝑧2⟩𝑍 = 𝑟𝑒𝑎𝑙{𝑧1
∗ ⋅ 𝐻𝑍 ⋅ 𝑧2

 }

In the ADMM-algorithm presented later, appears the proximal operator associated to the 1-norm. In

general, for any real-valued and proper, closed, convex function 𝑓(∙) defined on a real Hilbert space 𝑍 (in

particular a real finite dimensional vector space), the proximal operator associated to 𝑓(∙) is defined by

53

𝑝𝑟𝑜𝑥𝑓
 ∶ 𝑍 ⟶ 𝑍

𝑧 ⟶ 𝑝𝑟𝑜𝑥𝑓
 (𝑧) ∶= argmin

𝑤∈𝑍
𝑓(𝑤) +

1

2
‖𝑤 − 𝑧‖𝑍,2

2

For the special case 𝑓(∙) = 𝑠 ∙ ‖⋅‖ℝ𝑛,1 i.e. the standard 1-norm on the real vector space ℝ𝑛 multiplied

by a positive parameter 𝑠 > 0, the corresponding proximal operator

𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑧) = argmin
𝑤∈ℝ𝑛

 𝑠 ∙ ‖𝑤‖ℝ𝑛,1 +
1

2
‖𝑤 − 𝑧‖ℝ𝑛,2

2

has a closed form called “soft-thresholding” and given component wise by

We note that in that special case, the 1-norm is the standard 1-norm on ℝ𝑛 given by

‖𝑧‖ℝ𝑛,1 = ∑|𝑧𝑘|

𝑛

𝑘=1

and the 2-norm is the standard 2-norm on ℝ𝑛 given by

‖𝑧‖ℝ𝑛,2 = √∑ 𝑧𝑘
2

𝑛

𝑘=1

In our case however, the ADMM algorithm requires the proximal operator to be define on 𝑍 ≃ ℂ𝑛 which

is a complex-valued vector space. Moreover, its 1-norm is given by

‖𝑧‖𝑍,1 = ‖𝐻𝑍 𝑧‖ℂ𝑛,1 = ‖𝐻𝑍 𝑟𝑧‖ℝ𝑛,1 + ‖𝐻𝑍 𝑖𝑧‖ℝ𝑛,1

while its 2-norm is given by

‖𝑧‖𝑍,2
 = √𝑟𝑒𝑎𝑙{𝑧∗ ⋅ 𝐻𝑍 ⋅ 𝑧}

(𝑝𝑟𝑜𝑥𝑠∙‖∙‖ℝ𝑛,1

 (𝑧))
𝑘

= {

𝑧𝑘 − 𝑠 : 𝑧𝑘 > 𝑠

0 : |𝑧𝑘| ≤ 𝑠
𝑧𝑘 + 𝑠 : 𝑧𝑘 < −𝑠

} 𝑓𝑜𝑟 𝑘 = 1,… , 𝑛

Soft-Thresholding

54

and the associated E-product is

⟨𝑧1|𝑧2⟩𝑍 = 𝑟𝑒𝑎𝑙{𝑧1
∗ ⋅ 𝐻𝑍 ⋅ 𝑧2

 }

The corresponding proximal operator evaluated on vector 𝑧 ∈ 𝑍 ≃ ℂ𝑛 is then

argmin
𝑤 ∈ 𝑍

𝑠 ∙ ‖𝑤‖𝑍,1 +
1

2
‖𝑧 − 𝑤‖𝑍,2

2

= argmin
(𝑟𝑤+𝑗 𝑖𝑤) ∈ 𝑍

𝑠 ∙ ‖𝐻𝑍 𝑟𝑤‖ℝ𝑛,1 + 𝑠 ∙ ‖𝐻𝑍 𝑖𝑤‖ℝ𝑛,1 + ‖𝑟𝑧 − 𝑟𝑤‖𝑍,2
2 + ‖𝑖𝑧 − 𝑖𝑤‖𝑍,2

2

= argmin
𝑟𝑤 ∈ ℝ𝑛

𝑠 ∙ ‖𝐻𝑍 𝑟𝑤‖ℝ𝑛,1 + ‖𝑟𝑧 − 𝑟𝑤‖𝑍,2
2 + 𝑗 argmin

𝑖𝑤 ∈ ℝ𝑛
𝑠 ∙ ‖𝐻𝑍 𝑖𝑤‖ℝ𝑛,1 + ‖𝑖𝑧 − 𝑖𝑤‖𝑍,2

2

This optimization problem reduces for each component independently to the 1-dimensional problem

argmin
𝑤 ∈ ℝ

 𝑠 ⋅ |Δ𝑍𝑘 𝑤| + Δ𝑍𝑘(𝑟𝑧𝑘 − 𝑤)2 = argmin
𝑤 ∈ ℝ

 𝑠 ⋅ |𝑤| + (𝑟𝑧𝑘 − 𝑤)2 = 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ,1

 (𝑟𝑧𝑘)

for the real part and similarly

argmin
𝑤 ∈ ℝ

 𝑠 ⋅ |Δ𝑍𝑘 𝑤| + Δ𝑍𝑘(𝑖𝑧𝑘 − 𝑤)2 = argmin
𝑤 ∈ ℝ

 𝑠 ⋅ |𝑤| + (𝑖𝑧𝑘 − 𝑤)2 = 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ,1

 (𝑖𝑧𝑘)

for the imaginary part.

It follows

argmin
𝑤 ∈𝑍

𝑠 ∙ ‖𝑤‖𝑍,1 +
1

2
‖𝑧 − 𝑤‖𝑍,2

2 = 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑟𝑧) + 𝑗 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑖𝑧)

It follows that the proximal operator of 𝑠 ∙ ‖∙‖𝑍,1 defined on space 𝑍 with 2-norm ‖∙‖𝑍,2 is given by

It is simply the complexification of the soft-thresholding applied on each component 𝑟𝑧 and 𝑖𝑧

independently. We note in particular that this expression is independent of the matrix 𝐻𝑍. Please take

note that we will assume the following in the reste of the text.

𝑝𝑟𝑜𝑥𝑠∙‖∙‖𝑍,1

 (𝑧) = 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑟𝑧) + 𝑗 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑖𝑧)

55

3.2 The constrained 1-norm problem and the generalized-LASSO problem

We define “quadratically-constrained 1-norm minimization problem” (Q-constrained 1-norm problem) as

the optimization problem

where the real value δ𝑌 is a maximal tolerance (or residual), the vector space 𝑋 is endowed with the

E-product ⟨⋅ | ⋅⟩𝑋 and ‖⋅‖𝑋,2 is the induced 2-norm, vector space 𝑌 is endowed with the E-product ⟨⋅ | ⋅⟩𝑌

and ‖⋅‖𝑌,2 its induced 2-norm, vector space 𝑍 is endowed with the E-product ⟨⋅ | ⋅⟩𝑍 and induced 2-norm

‖⋅‖𝑍,2 and also with the 1-norm ‖⋅‖𝑍,1 by a choice of a basis on 𝑍, and where 𝜙 is a linear map from 𝑋 to

𝑍 and 𝑀 is a linear map from 𝑋 to 𝑌. We restrict ourselves on the case where the matrix 𝐻𝑍 of the

E-product on 𝑍 is also the matrix of the 1-norm on 𝑍. Note that the solution set 𝑆1 is parametrized by the

positive constant δ𝑌.

We decompose spaces 𝑋 and 𝑌 according to the orthogonal decomposition associated to 𝑀:

𝑋 = 𝑋 ̅̅̅̅ ⊕ 𝑋 ̅̅̅̅ ⊥ and 𝑌 = 𝑌 ̅̅ ̅ ⊕ 𝑌 ̅̅ ̅⊥

Every time we encounter a 1-norm ‖⋅‖𝑍,1 on a 2𝑛-dimensional vector space 𝑍 ≃

ℂ𝑛, it will be assumed that this 1-one norm is of the form

‖𝑧‖𝑍,1 = ‖𝐻𝑍 𝑧‖ℂ𝑛,1

with real positive-definite diagonal 𝑛 × 𝑛 matrix

𝐻𝑍 = [
Δ𝑍1 0 0
0 ⋱ 0
0 0 Δ𝑍𝑛

]

which is simultaneously the hermitian matrix of the E-product ⟨⋅ | ⋅⟩𝑍 on 𝑍. In that

case, the proximal operator associated to the 1-norm is given by

𝑝𝑟𝑜𝑥𝑠∙‖∙‖𝑍,1

 (𝑧) = 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑟𝑧) + 𝑗 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑖𝑧)

𝑥# ∈ 𝑆1(δ𝑌) ≔ argmin
𝑥 ∈ 𝑋

{ ‖𝜙 𝑥‖𝑍,1 𝑠. 𝑡. ‖𝑀 𝑥 − 𝑦‖𝑌,2
2 ≤ δ𝑌

2} Q-constrained
1-norm problem

56

with

 𝑋 ̅̅̅̅ = Ker(𝑀)⊥ = Im(𝑀†) and 𝑌 ̅̅ ̅ = Ker(𝑀†)⊥ = Im(𝑀)

The bar symbol ⋅ ̅ stands for the orthogonal projection on 𝑋 ̅̅̅̅ or 𝑌 ̅̅ ̅depending on the variable under the

bar. Therefore is 𝑦 ̅ the projection of 𝑦 on 𝑌 ̅̅ ̅ i.e. the closest point of Im(𝑀) to 𝑦. The orthogonal

decomposition of 𝑦 is

𝑦 = 𝑦 ̅ + 𝑦⊥

where 𝑦 ̅ ∈ 𝑌 ̅̅ ̅ and 𝑦⊥ ∈ 𝑌 ̅̅ ̅⊥ = Im(𝑀)⊥ are unique.

We define the closed ball of radius δ𝑌 centered in 𝑦 as the closed set

𝐵δ𝑌
(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ ≔ {𝑦′ ∈ 𝑌 |‖𝑦′ − 𝑦‖𝑌,2 ≤ δ𝑌 } ⊂ 𝑌

We define the constraint function 𝛾(⋅) by

𝛾(𝑥) ≔ ‖𝑀 𝑥 − 𝑦‖𝑌,2
2 − δ𝑌

2

The constraint of the Q-constraint 1-norm problem can thus be written as

𝛾(𝑥) ≤ 0

The set of vectors that satisfy this constraint will be called the “feasible set“ and will be denoted by

Γ(δ𝑌). A vector 𝑥 ∈ 𝑋 satisfies that constraint exactly if

𝑀𝑥 ∈ 𝐵δ𝑌
(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅

It follows that the feasible-set is the pre-image by 𝑀 of the set Im(𝑀) ∩ 𝐵δ𝑌
(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ :

Γ(δ𝑌) = {𝑥 ∈ 𝑋 |𝑀𝑥 ∈ Im(𝑀) ∩ 𝐵δ𝑌
(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅} = {𝑥 ∈ 𝑋 |𝑀𝑥 ∈ 𝐵δ𝑌

(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅}

This set is non-empty exactly if

δ𝑌
2 ≥ ‖𝑦⊥‖𝑌,2

2 = ‖𝑦 ̅ − 𝑦‖𝑌,2
2

is satisfied. This gives a lower bound for δ𝑌 that that ensure that the feasible set is non-empty.

Since both Im(𝑀) and 𝐵δ𝑌
(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ are closed, Im(𝑀) ∩ 𝐵δ𝑌

(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ is closed too. And since 𝑀 is continuous, the

feasible set is closed as well.

57

In order to guaranty that Γ(δ𝑌) satisfies the constraint qualification of Slater, it must have non-empty

relative interior ([1] page 226). A sufficient condition for that is

δ𝑌
2 > ‖𝑦⊥‖𝑌,2

2

and we will assume that it is the case. The situation is described in figure 4.

Figure 4: The feasible set is Γ (written Γ(δ𝑌) in the text). The important fact about that figure is

that if δ𝑌
 < ‖𝑦⊥‖𝑌,2

 , then is the feasible set of the quadratically-constrained 1-norm minimization

empty. In that case exist no equivalent generalized-LASSO problem.

58

We can now reformulate the Q-constrained 1-norm problem as

𝑥# ∈ 𝑆1(δ𝑌) ≔ argmin

{‖𝜙 𝑥‖𝑍,1 𝑠. 𝑡. 𝑥 ∈ Γ(δ𝑌)}

The feasible set Γ(δ𝑌) is non-empty, closed and convex with non-empty relative interior. It verifies thus

the constraint qualification of Slater. The objective function of the problem is continuous and convex.

Our Q-constrained 1-norm problem verifies thus strong (Lagrange) duality.

To the Q-constrained 1-norm problem, we associate the generalized-LASSO problem

𝑥# ∈ 𝑆𝐿𝐴𝑆𝑆𝑂(𝜆) ≔ argmin
𝑥 ∈ 𝑋

 ‖𝜙 𝑥‖𝑋,1 +
1

𝜆
 ‖𝑀 𝑥 − 𝑦‖𝑌,2

2

where 𝜆 is a positive constant. This can be rewritten in the standard form

Note that the generalized-LASSO problem is unconstrained, in contrast to the Q-constrained 1-norm

problem. This problem can be solved with the ADMM-algorithm (for generalized-LASSO problem).

It is usually assumed in the MRI literature that, as a result of the theory of Lagrange duality, there exist

for any positive 𝛿𝑌 > ‖𝑦⊥‖𝑌,2
2 a positive value 𝜆(𝛿𝑌) so that any obtained solution for the

generalized-LASSO problem is also a solution of the Q-constrained 1-norm problem, or in other words:

𝑆𝐿𝐴𝑆𝑆𝑂(𝜆(𝛿𝑌)) ⊆ 𝑆1(𝛿𝑌)

We allow here a point of criticism concerning that assumption. The best result the author could find to

justify such a clam is proposition 3.2 in [3]. But that proposition is only valid for the LASSO problem,

which is equivalent to our generalized-LASSO only if 𝜙 is invertible. However is 𝜙 usually not invertible in

our MRI applications. Moreover, this proposition 3.2 describes explicitly values 𝜆 and 𝛿 as dependent of

the solution 𝑥# of both problems, while the ideal situation we would like to be true for MRI

reconstruction is that 𝜆 only depends on 𝛿𝑌. The help of mathematician would be welcome in order to

clarify this situation.

𝑥# ∈ 𝑆𝐿𝐴𝑆𝑆𝑂(𝜆) = argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜆

2
‖𝜙 𝑥‖𝑍,1

Generalized-LASSO

Problem

59

In any case, even if the previously discussed assumption is true, choosing the appropriate value of 𝜆 as a

function of 𝛿𝑌 remains a non-trivial problem and there is no generic method for that as far as the author

knows. To the time when the present text is written, the usual practice for performing so called

“compressed-sensing” MRI reconstructions is to ignore the Q-constraint 1-norm problem and to solve

the generalized-LASSO problem instead with an empirically chosen value for 𝜆. We will follow that

established procedure in the present version of the text. But it is a hope of the author that this

uncomfortable situation will improve in the future.

As we will see in the section about the ADDMM-algorithm, each generalized-LASSO problem is

associated to a 2-terms lest-square sub-problem given by

where 𝜌 is a positive constant. This problem can be solved with the CGD-algorithm (for 2-terms

least-square problems).

The solution set of 𝑆𝐿𝐴𝑆𝑆𝑂 (i.e. the set of minimizer) for the generalized-LASSO problem is never empty

(see [4] for example). But it contains several different solutions in general. For example, if 𝐿 ≔

𝐾𝑒𝑟(𝑀) ∩ 𝐾𝑒𝑟(𝜙) is not{0}, then for 0 ≠ 𝑛 ∈ 𝐿 and 𝑥# being a solution, is 𝑥# + 𝑛 is a different solution

since

1

2
‖𝑀 (𝑥# + 𝑛) − 𝑦‖

𝑌,2

2

+
𝜆

2
‖𝜙 (𝑥# + 𝑛)‖

𝑍,1
=

1

2
‖𝑀 𝑥# − 𝑦‖

𝑌,2

2

+
𝜆

2
‖𝜙 𝑥#‖

𝑍,1

= min
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜆

2
‖𝜙 𝑥‖𝑍,1

We give in appendix A another example of non-uniqueness even in the case where 𝐿 ≔ 𝐾𝑒𝑟(𝑀) ∩

𝐾𝑒𝑟(𝜙) is{0}.

Informal note: As observed by the author, solving the generalized-LASSO problem with the

ADMM-algorithm (presented later) converges (seemingly) to different solutions when giving

different initial images as input to the algorithm. This is an experimental indication that the

optimization problem we solve for such reconstructions do not have a unique solution.

2-terms least-square

sub-problem associated

to the

generalized-LASSO

problem

𝑥# ∈ 𝑆𝐿𝑆𝑄 ≔ argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜌

2
‖𝜙𝑥 − 𝑧‖𝑍,2

2

60

3.3 The generalized-LASSO problem with multiple 1-norm-terms

Let be the following generalized-LASSO problem with multiple 1-norm-terms:

We are going to rewrite it as a generalized-LASSO problem with single 1-norm-term.

First of all, we define

𝜆 ≔
1

𝑅
∑ 𝜆𝑖

𝑅
𝑖=1 and 𝑙𝑖 ≔

𝜆𝑖

𝜆
 and 𝑙𝑖𝜙𝑖 ≔ 𝑙𝑖 ⋅ 𝜙𝑖

and we rewrite the problem as

𝑥# ∈ 𝑆𝐿𝐴𝑆𝑆𝑂 ∶= argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜆

2
‖𝑙1𝜙1 𝑥‖𝑍1,1 + ⋯+

𝜆

2
‖𝑙𝑅𝜙𝑅 𝑥‖𝑍𝑅,1

We define furthermore the space 𝑍 by

𝑍 ≔ 𝑍1 × …× 𝑍𝑅

We assume here that 𝑍𝑖 ≃ ℂ𝑛𝑖 and we define 𝑛 ≔ ∑ 𝑛𝑖
𝑅
𝑖=1 . For 𝑧𝑖 ∈ 𝑍𝑖 ≃ ℂ𝑛𝑖 , 𝑖 ∈ {1,… , 𝑅} we define

𝑧 ≔ [

𝑧1

⋮
𝑧𝑅

] ∈ 𝑍

We define the matrix 𝐻𝑍 by

𝐻𝑧 ≔ [

𝐻𝑍1
0 0

0 ⋱ 0
0 0 𝐻𝑍𝑅

]

We define the 1-norm on 𝑍 as

‖𝑧‖𝑍,1 ≔ ∑‖𝑧𝑖‖𝑍𝑖,1

𝑅

𝑖=1

= ∑‖𝐻𝑍𝑖
 𝑧𝑖‖ℂ𝑛𝑖 ,1

𝑅

𝑖=1

= ‖𝐻𝑍 𝑧‖ℂ𝑛,1

and the E-product for any 𝑎, 𝑏 ∈ 𝑍 as

𝑥# ∈ 𝑆𝐿𝐴𝑆𝑆𝑂 ∶= argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜆1

2
‖𝜙1 𝑥‖𝑍1,1 + ⋯+

𝜆𝑅

2
‖𝜙𝑅 𝑥‖𝑍𝑅,1

Generalized-LASSO

problem with multiple

1-norm terms

61

⟨𝑎|𝑏⟩ ≔ 𝑟𝑒𝑎𝑙 {[

𝑎1

⋮
𝑎𝑅

]

∗

[

𝐻𝑍1
0 0

0 ⋱ 0
0 0 𝐻𝑍𝑅

] [
𝑏1

⋮
𝑏𝑅

]} = 𝑟𝑒𝑎𝑙{𝑎∗𝐻𝑍𝑏} = ∑⟨𝑎𝑖|𝑏𝑖⟩𝑍𝑖

𝑅

𝑖=1

so that the 2-norm on 𝑍 is given by

‖𝑧‖𝑍,2
2 = ∑‖𝑧𝑖‖𝑍𝑖,2

2

𝑅

𝑖=1

We define the map 𝜙 as

𝑥 ⟼ 𝜙𝑥 ≔ [
𝑙1𝜙1

⋮
𝑙𝑅𝜙𝑅

] 𝑥 = [
𝑙1𝜙1 𝑥

⋮
𝑙𝑅𝜙𝑅𝑥

]

Our problem with multiple 1-norm-terms can thus be rewritten as the generalized-LASSO problem

𝑥# ∈ 𝑆 ∶= argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜆

2
‖𝜙 𝑥‖𝑍,1

and can be solved with the ADMM-algorithm presented later.

The associated least-square sub-problem is

𝑥# ∈ 𝑆 ≔ argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜌

2
‖𝜙𝑥 − 𝑧‖𝑍,2

2

By expending the 2-norm we obtain the following least-square problem with multiple terms:

which can be solved with the CGD-algorithm (for least-square problem with multiple terms).

𝑥# ∈ 𝑆𝐿𝑆𝑄 ≔ argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜌

2
‖𝑙1𝜙1 𝑥 − 𝑧1‖𝑍1,2

2 + ⋯+
𝜌

2
‖𝑙𝑅𝜙𝑅 𝑥 − 𝑧𝑅‖𝑍𝑅,2

2

Multiple-terms least-square sub-problem

associated to the generalized-LASSO problem

with multiple 1-norm terms

62

Part II: Algorithms

4. The conjugate-gradient-algorithm

4.1 The CGD-algorithm for least-square problems

We recall the CGD-algorithm for least-square problems already presented in subsection 2.3.

CGD-algorithm (for least-square problems):

 INITIALIZE

(a) Choose an 𝑥0 ∈ 𝑋

(b) Evaluate the residual 𝑟0 = 𝑣 − 𝐴 𝑥0 ∈ 𝑉

(c) Evaluate the search direction 𝑝0 = 𝐴† 𝑟0 ∈ 𝑋

 DO

(d) Evaluate the line-search parameter : 𝑎𝑖 =
‖𝐴†𝑟𝑖‖𝑋,2

2

‖𝐴 𝑝𝑖‖𝑉,2
2 ∈ ℝ

(e) Update the approximated solution : 𝑥𝑖+1 = 𝑥𝑖 + 𝑎𝑖 𝑝𝑖 ∈ 𝑋

(f) Update the residual: 𝑟𝑖+1 = 𝑟𝑖 − 𝑎𝑖 𝐴𝑝𝑖 ∈ 𝑉

(g) Update the b-parameter: 𝑏𝑖 =
‖𝐴†𝑟𝑖+1‖

𝑋,2

2

‖𝐴†𝑟𝑖‖𝑋,2

2

(h) Update the search direction: 𝑝𝑖+1 = 𝐴†𝑟𝑖+1 + 𝑏𝑖 𝑝𝑖 ∈ 𝑋

 UNTIL ‖𝑨†𝒓𝒊+𝟏‖𝑿,𝟐

𝟐
 is 0

The CGD-algorithm (for least-square problems) as given above can hardly be translated directly into a

programing language code. We define here a way to name the variables with alpha-numeric symbols and

rewrite the algorithm in pseudo-code using these new variable names. In the following algorithm, all

variable names are non-dissociable symbols, meaning that 𝐴𝑝, for example, do not mean “𝐴 time 𝑝”.

Instead, 𝐴𝑝 designate a single variable. All products will be written with a dote “⋅”. The product “𝐴 times

𝑝”, for example, will be written 𝐴 ⋅ 𝑝. We will typically write expression such that 𝐴𝑝 ∶= 𝐴 ⋅ 𝑝. The index

𝑖 will be replaced by the postfix “_curr” (for “current”) and the index 𝑖 + 1 will be replaced by the postfix

“_next”. The squared-norm of a variable 𝑣𝑎𝑟 will be written “sqn_var”. The adjoint of an

homomorphism 𝐴 will be written “dagA” (for “A dagger” or “dagger A”). The residuals, written with 𝑟 in

the algorithms above, will be written “res”. The algorithm can now be written with alpha-numeric

variable names on the left-hand-side and mathematical operation on the right-hand-side. Note the

63

explicit intervention the hermitian matrices 𝐻𝑋 and 𝐻𝑉. The matrix 𝐻𝑋 will be written 𝐻𝑋 and the matrix

𝐻𝑉 will be written 𝐻𝑉.

64

Pseudo-code for CGD-algorithm (for least-square problems)

INITIALIZE

Choose an initial guess x0

Choose a machine-epsilon 𝑒𝑝𝑠

Choose a maximal number of iteration 𝑛𝐼𝑡𝑒𝑟_𝑚𝑎𝑥

nIter = 0

res_next = 𝑣 − 𝐴 ⋅ 𝑥0

dagA_res_next = 𝐴† ⋅ res_next

p_next = dagA_res_next

sqn_dagA_res_next = 𝑟𝑒𝑎𝑙{dagA_res_next∗ ⋅ 𝐻𝑋 ⋅ dagA_res_next}

DO

nIter = nIter + 1

res_curr = res_next

sqn_dagA_res_curr = sqn_dagA_res_next

p_curr = p_next

IF 𝑠𝑞𝑛_𝑑𝑎𝑔𝐴_𝑟𝑒𝑠_𝑐𝑢𝑟𝑟 < 𝑒𝑝𝑠 BREAK

Ap_curr = 𝐴 ⋅ p_curr

sqn_Ap_curr = 𝑟𝑒𝑎𝑙{Ap_curr∗ ⋅ 𝐻𝑉 ⋅ Ap_curr}

𝑎 =
sqn_dagA_res_curr

sqn_Ap_curr

x_next = x_curr + 𝑎 ⋅ p_curr

IF 𝑛𝐼𝑡𝑒𝑟 ≥ 𝑛𝐼𝑡𝑒𝑟_𝑚𝑎𝑥 BREAK

res_next = res_curr − 𝑎 ⋅ Ap_curr

dagA_res_next = 𝐴† ⋅ res_next

sqn_dagA_res_next = 𝑟𝑒𝑎𝑙{dagA_res_next∗ ⋅ 𝐻𝑋 ⋅ dagA_res_next}

𝑏 =
sqn_dagA_res_next

sqn_dagA_res_curr

p_next = dagA_res_next + 𝑏 ⋅ p_curr

END DO

65

4.2 Preconditioning

Let be the E-product ⟨⋅ | ⋅⟩𝑋 with associated H-product (⋅ | ⋅)𝑋 on a vector space 𝑋 ≃ ℂ𝑛. Let be 𝑆𝑋 =

 ℛ𝐻𝑋 the matrix of that E-product in the real representation and 𝐻𝑋 the matrix of the associated H-

product. It holds then

⟨𝑥1|𝑥2⟩𝑋 = ℛ𝑥1
𝑇𝑆𝑋 ℛ𝑥2 = real(𝑥1

∗ 𝐻𝑋 𝑥2) ∀𝑥1, 𝑥2 ∈ 𝑋

Let be the E-product ⟨⋅ | ⋅⟩𝑉 with associated H-product (⋅ | ⋅)𝑉 on a vector space 𝑉 ≃ ℂ𝑚. Let be 𝑆𝑉 =

 ℛ𝐻𝑉 the matrix of that E-product in the real representation and 𝐻𝑉 the matrix of the associated H-

product. It holds then

⟨𝑣1|𝑣2⟩𝑉 = ℛ𝑣1
𝑇𝑆𝑉 ℛ𝑣2 = real(𝑣1

∗ 𝐻𝑉 𝑣2) ∀𝑣1, 𝑣2 ∈ 𝑉

Since 𝐻𝑋 resp. 𝐻𝑉 are hermitian and positive-definite, there exist unique hermitian positive-definite

square-roots (or principal square root) matrices 𝑊𝑋 resp. 𝑊𝑉 such that

𝐻𝑋 = 𝑊𝑋
∗ 𝑊𝑋 resp. 𝐻𝑉 = 𝑊𝑉

∗ 𝑊𝑉

or in the real representation

𝑆𝑋 = ℛ𝑊𝑋
𝑇 ℛ𝑊𝑋 resp. 𝑆𝑉 = ℛ𝑊𝑉

𝑇 ℛ𝑊𝑉

For 𝑣1, 𝑣2 ∈ 𝑉 it holds thus

⟨𝑣1|𝑣2⟩𝑉 = real(𝑣1
∗𝐻𝑉𝑣2) = real(𝑣1

∗𝑊𝑉
∗ 𝑊𝑉𝑣2) = real((𝑊𝑉𝑣1)

∗ 𝑊𝑉𝑣2) = ⟨𝑊𝑉𝑣1|𝑊𝑉𝑣2⟩ℂ𝑚

Similarily on 𝑋 holds

⟨𝑥1|𝑥2⟩𝑋 = ⟨𝑊𝑋𝑥1|𝑊𝑋𝑥2⟩ℂ𝑛

Let be 𝐴 the matrix of a homomorphism from 𝑋 to , 𝑣 ∈ 𝑉 and 𝑥 ∈ 𝑋. It holds then

‖𝐴 𝑥 − 𝑣‖𝑉,2
2 = ‖𝑊𝑉𝐴 𝑥 − 𝑊𝑉𝑣‖ℂ𝑚,2

2

We define the substitute variable 𝑥 by

𝑥 ∶= 𝑊𝑋 𝑥 which means 𝑥 = 𝑊𝑋
−1�̂�

It holds then

⟨𝑥1|𝑥2⟩𝑋 = ⟨𝑊𝑋𝑥1|𝑊𝑋𝑥2⟩ℂ𝑛 = ⟨𝑥1|𝑥2⟩ℂ𝑛 = ℛ𝑥1
𝑇 ℛ𝑥2

66

and

‖𝐴 𝑥 − 𝑣‖𝑉,2
2 = ‖𝑊𝑉𝐴 𝑥 − 𝑊𝑉𝑣‖ℂ𝑚,2

2 = ‖𝑊𝑉𝐴 𝑊𝑋
−1�̂� − 𝑊𝑉𝑣‖

ℂ𝑚,2

2

We do the substitution

�̂� ≔ 𝑊𝑉𝐴 𝑊𝑋
−1 and 𝑣 ∶= 𝑊𝑉𝑣

It follows

𝑆 = argmin
𝑥∈𝑋

‖𝐴 𝑥 − 𝑣‖𝑉,2
2 = 𝑊𝑋

−1 argmin
𝑥∈ℂ𝑛

‖�̂� �̂� − 𝑣‖
ℂ𝑚,2

2

where the E-product for the variable 𝑥 ∈ ℂ𝑛 is the canonical E-product.

This is a reformulation of the lest-square problem on vector space ℂ𝑛 and ℂ𝑚 with canonical E-products

and the set of substitutions

𝑥:= 𝑊𝑋 𝑥 �̂� ≔ 𝑊𝑉𝐴 𝑊𝑋
−1 𝑣 ∶= 𝑊𝑉𝑣

is an example of preconditioning.

The solving of the least square problem can thus be achieved with the CGD-algorithm with canonical

E-products by preconditioning (i.e. by performing the above substitutions). For solving least-square

problems with the CGD-algorithm, preconditioning is an alternative and fully equivalent method to the

use non-canonical E-products.

Informal note: We mention this method because it is popular in engineering and many

MRI-reconstructions make use that. We will however stick to the use of non-canonical E-products in this

book. But we want to stress the fact that it is only a matter of convention.

4.3 The CGD-algorithm for least-square problems with 2 terms

The ADMM-algorithm presented later includes, as a sub-problem, the following two-terms least-square

problem:

𝑥# ∈ 𝑆𝐿𝑆𝑄 ≔ argmin
𝑥

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜌

2
‖𝜙𝑥 − 𝑧‖𝑍,2

2

We have

67

‖𝑀 𝑥 − 𝑦‖𝑌,2
2 = 𝑟𝑒𝑎𝑙{(𝑀 𝑥 − 𝑦)∗ 𝐻𝑌 (𝑀 𝑥 − 𝑦)}

and

𝜌‖𝐷𝑥 − 𝑧‖𝑍,2
2 = 𝑟𝑒𝑎𝑙{(𝜙𝑥 − 𝑧)∗ 𝜌𝐻𝑍 (𝜙𝑥 − 𝑧)}

In order to rewrite the objective function as a single square term, we define the homomorphism 𝐴 by the

concatenation

𝐴 ≔ [
𝑀
𝜙

]

and the vector 𝑣 by the concatenation

𝑣 ≔ [
𝑦
𝑧
]

Since 𝑀𝑥 ∈ 𝑌 and 𝜙𝑥 ∈ 𝑍 it follows that 𝐴𝑥 ∈ 𝑌 × 𝑍. We define therefore 𝑉 ∶= 𝑌 × 𝑍. It follows that

any 𝑎 ∈ 𝑉 can be written as the pair

𝑎 = [
𝑎1

𝑎2
] with 𝑎1 ∈ 𝑌 and 𝑎2 ∈ 𝑍.

In particular is

𝑣 = [
𝑦
𝑧
] ∈ 𝑉

On 𝑉 we define the E-product ⟨⋅ | ⋅⟩𝑉 as

⟨𝑎|𝑏⟩𝑉 = 𝑟𝑒𝑎𝑙 {[
𝑎1

𝑎2
]
∗

∙ [
𝐻𝑌 0
0 𝜌𝐻𝑍

] ∙ [
𝑏1

𝑏2
]} = 𝑟𝑒𝑎𝑙{𝑎∗ ∙ 𝐻𝑉 ∙ 𝑏} = ⟨𝑎1|𝑏1⟩𝑌 + 𝜌⟨𝑎2|𝑏2⟩𝑍

With

𝐻𝑉 = [
𝐻𝑌 0
0 𝜌𝐻𝑍

]

It follows immediately that the induced 2-norm on 𝑉 is given by

‖𝑎‖𝑉,2
2 = ‖[

𝑎1

𝑎2
]‖

𝑉,2

2

= ‖𝑎1‖𝑌,2
2 + 𝜌‖𝑎2‖𝑍,2

2

We now observe that

68

1

2
‖𝐴𝑥 − 𝑣‖𝑉,2

2 =
1

2
‖[

𝑀𝑥 − 𝑦
𝜙 𝑥 − 𝑧

]‖
𝑉,2

2

=
1

2
‖𝑀𝑥 − 𝑦‖𝑌,2

2 +
𝜌

2
‖𝜙 𝑥 − 𝑧‖𝑍,2

2

Our 2-terms least-square optimization problem can thus be rewritten with a single square objective as

𝑥# ∈ 𝑆𝐿𝑆𝑄 ≔ argmin
𝑥

1

2
‖𝐴𝑥 − 𝑣‖𝑉,2

2

Given an initial value 𝑥0, a solution 𝑥# can be obtained by mean of the CGD-algorithm (for least-square

problem) given in subsection 4.1.

For the evaluation of 𝐴† we note that

𝐴† = 𝐻𝑋
−1𝐴∗𝐻𝑉 = 𝐻𝑋

−1[𝑀∗ 𝜙∗] [
𝐻𝑌 0
0 𝜌𝐻𝑍

] = 𝐻𝑋
−1[𝑀∗𝐻𝑌 𝜌𝜙∗𝐻𝑍] = [𝑀† 𝜌𝜙†]

We observe the subtle fact that a factor 𝜌 is present in front of 𝜙†.

For implementation purposes, we also propose the corresponding pseudo-code. The matrices 𝐻𝑋 and 𝐻𝑌

will be written 𝐻𝑋 and 𝐻𝑌 respectively. The matrix 𝜌 ⋅ 𝐻𝑍 will be written 𝜌𝐻𝑍.

69

CGD-algorithm (for least-square problems with 2 terms):

 INITIALIZE

(a) Choose an 𝑥0 ∈ 𝑋

(b) Evaluate the residual

 𝑟𝑒𝑠_𝑦0 = 𝑦 − 𝑀 𝑥0 ∈ 𝑌

 𝑟𝑒𝑠_𝑧0 = 𝑧 − 𝜙 𝑥0 ∈ 𝑍

(c) Evaluate the search direction

𝑝0 = 𝑀† 𝑟𝑒𝑠_𝑦0 + 𝜌 𝜙† 𝑟𝑒𝑠_𝑧0 ∈ 𝑋

 DO

(d) Evaluate the line-search parameter :

𝐴†𝑟𝑖 = 𝑀† 𝑟𝑒𝑠_𝑦𝑖 + 𝜌 𝜙† 𝑟𝑒𝑠_𝑧𝑖

𝐴 𝑝𝑖 = [
𝑀 𝑝𝑖

𝜙 𝑝𝑖
] ∈ 𝑉 = 𝑌 × 𝑍

𝑎𝑖 =
‖𝐴†𝑟𝑖‖𝑋,2

2

‖𝐴 𝑝𝑖‖𝑉,2
2 ∈ ℝ

(e) Update the approximated solution :

𝑥𝑖+1 = 𝑥𝑖 + 𝑎𝑖 𝑝𝑖 ∈ 𝑋

(f) Update the residual:

𝑟𝑒𝑠_𝑦𝑖+1 = 𝑟𝑒𝑠_𝑦𝑖 − 𝑎𝑖 𝑀𝑝𝑖 ∈ 𝑌

𝑟𝑒𝑠_𝑧𝑖+1 = 𝑟𝑒𝑠_𝑧𝑖 − 𝑎𝑖 𝜙𝑝𝑖 ∈ 𝑍

(g) Update the b-parameter:

𝐴†𝑟𝑖+1 = 𝑀† 𝑟𝑒𝑠_𝑦𝑖+1 + 𝜌 𝜙† 𝑟𝑒𝑠_𝑧𝑖+1

𝑏𝑖 =
‖𝐴†𝑟𝑖+1‖𝑋,2

2

‖𝐴†𝑟𝑖‖𝑋,2
2

(h) Update the search direction:

𝑝𝑖+1 = 𝐴†𝑟𝑖+1 + 𝑏𝑖 𝑝𝑖 ∈ 𝑋

 UNTIL ‖𝑨†𝒓𝒊+𝟏‖𝑿,𝟐

𝟐
 is 0

70

Pseudo-code for CGD-algorithm (for least-square problems with 2 terms)

INITIALIZE

Choose an initial guess x0

Choose a machine-epsilon 𝑒𝑝𝑠

Choose a maximal number of iteration 𝑛𝐼𝑡𝑒𝑟_𝑚𝑎𝑥

nIter = 0

res_y_next = 𝑦 − 𝑀 ⋅ 𝑥0

res_z_next = 𝑧 − 𝜙 ⋅ 𝑥0

dagM_res_y_next = 𝑀† ⋅ res_y_next

dagF_res_z_next = 𝜌 ⋅ 𝜙† ⋅ res_z_next

dagA_res_next = dagM_res_y_next + dagF_res_z_next

p_next = dagA_res_next

sqn_dagA_res_next = 𝑟𝑒𝑎𝑙{dagA_res_next∗ ⋅ 𝐻𝑋 ⋅ dagA_res_next}

DO

nIter = nIter + 1

res_y_curr = res_y_next

res_z_curr = res_z_next

sqn_dagA_res_curr = sqn_dagA_res_next

p_curr = p_next

IF 𝑠𝑞𝑛_𝑑𝑎𝑔𝐴_𝑟𝑒𝑠_𝑐𝑢𝑟𝑟 < 𝑒𝑝𝑠 BREAK

Mp_curr = 𝑀 ⋅ p_curr

Fp_curr = 𝜙 ⋅ p_curr

sqn_Mp_curr = 𝑟𝑒𝑎𝑙{Mp_curr∗ ⋅ 𝐻𝑌 ⋅ Mp_curr}

sqn_Fp_curr = 𝑟𝑒𝑎𝑙{Fp_curr∗ ⋅ 𝜌𝐻𝑍 ⋅ Fp_curr}

71

sqn_Ap_curr = sqn_Mp_curr + sqn_Fp_curr

𝑎 =
sqn_dagA_res_curr

sqn_Ap_curr

x_next = x_curr + 𝑎 ⋅ p_curr

IF 𝑛𝐼𝑡𝑒𝑟 ≥ 𝑛𝐼𝑡𝑒𝑟_𝑚𝑎𝑥 BREAK

res_y_next = res_y_curr − 𝑎 ⋅ Mp_curr

res_z_next = res_z_curr − 𝑎 ⋅ Fp_curr

dagM_res_y_next = 𝑀† ⋅ res_y_next

dagF_res_z_next = 𝜌 ⋅ 𝜙† ⋅ res_z_next

dagA_res_next = dagM_res_y_next + dagF_res_z_next

sqn_dagA_res_next = 𝑟𝑒𝑎𝑙{dagA_res_next∗ ⋅ 𝐻𝑋 ⋅ dagA_res_next}

𝑏 =
sqn_dagA_res_next

sqn_dagA_res_curr

p_next = dagA_res_next + 𝑏 ⋅ p_curr

END DO

72

4.4 The CGD-algorithm for least-square problems with multiple terms

In order to be able to solve the generalized-LASSO problem with multiple 1-norm-terms, we need to

solve the following least-square sub problem

𝑥# ∈ 𝑆𝐿𝑆𝑄 ≔ argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜌

2
‖𝜙𝑥 − 𝑧‖𝑍,2

2

where 𝜙 resp. 𝑧 are of the form

𝜙 = [
𝑙1𝜙1

⋮
𝑙𝑅𝜙𝑅

] resp. 𝑧 = [

𝑧1

⋮
𝑧𝑅

]

Here are

𝑙𝑖𝜙𝑖 ∶ 𝑋 ⟶ 𝑍𝑖

homomorphisms for 𝑖 ∈ {1,… , 𝑅} where each 𝑍𝑖 is a vector space with its own E-product ⟨⋅ | ⋅⟩𝑍𝑖
 and the

induced 2-norm ‖⋅‖𝑍𝑖,2. We note that the previous least-square problem is therefore equal to the

following least-square problem with multiple terms:

𝑥# ∈ 𝑆𝐿𝑆𝑄 ≔ argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜌

2
‖𝑙𝜙1 − 𝑧1‖𝑍1,2

2 + ⋯+
𝜌

2
‖𝑙𝜙𝑅 − 𝑧𝑅‖𝑍𝑅,2

2

but this has only an informative role. For our needs, we only have to consider the 2-term least-square

problem above. The CGD-algorithm that solves this problem is the CGD-algorithm (for least-square

problems with 2-terms) written above. For the sake of clarity and in order to help its implementation, we

will write now that algorithm again with all components of 𝜙 and 𝑧 explicitly, and we will call it the

“CGD-algorithm (for least-square problems with multiple-terms)”. For implementation purposes, we also

propose the corresponding pseudo-code.

73

CGD-algorithm (for least-square problems with multiple-terms):

 INITIALIZE

(a) Choose an 𝑥0 ∈ 𝑋

(b) Evaluate the residuals

 𝑟𝑒𝑠_𝑦0 = 𝑦 − 𝑀 𝑥0 ∈ 𝑌

 𝑟𝑒𝑠_𝑧1,0 = 𝑧1 − 𝑙1𝜙1 𝑥0 ∈ 𝑍1

⋮

 𝑟𝑒𝑠_𝑧𝑅,0 = 𝑧𝑅 − 𝑙𝑅𝜙𝑅 𝑥0 ∈ 𝑍𝑅

(c) Evaluate the search direction

𝑝0 = 𝑀† 𝑟𝑒𝑠_𝑦0 + 𝜌 𝑙1𝜙1
† 𝑟𝑒𝑠_𝑧1,0 + ⋯+ 𝜌 𝑙𝑅𝜙𝑅

† 𝑟𝑒𝑠_𝑧𝑅,0 ∈ 𝑋

 DO

(d) Evaluate the line-search parameter :

𝐴†𝑟𝑖 = 𝑀† 𝑟𝑒𝑠_𝑦𝑖 + 𝜌 𝑙1𝜙1
† 𝑟𝑒𝑠_𝑧1,𝑖 + ⋯+ 𝜌 𝑙𝑅𝜙𝑅

† 𝑟𝑒𝑠_𝑧𝑅,𝑖 ∈ 𝑋

𝐴 𝑝𝑖 = [

𝑀 𝑝𝑖

𝑙1𝜙1 𝑝𝑖

⋮
𝑙𝑅𝜙𝑅 𝑝𝑖

] ∈ 𝑉 = 𝑌 × 𝑍1 × …× 𝑍𝑅

𝑎𝑖 =
‖𝐴†𝑟𝑖‖𝑋,2

2

‖𝐴 𝑝𝑖‖𝑉,2
2 ∈ ℝ

(e) Update the approximated solution :

𝑥𝑖+1 = 𝑥𝑖 + 𝑎𝑖 𝑝𝑖 ∈ 𝑋

(f) Update the residual:

𝑟𝑒𝑠_𝑦𝑖+1 = 𝑟𝑒𝑠_𝑦𝑖 − 𝑎𝑖 𝑀𝑝𝑖 ∈ 𝑌

𝑟𝑒𝑠_𝑧1,𝑖+1 = 𝑟𝑒𝑠_𝑧1,𝑖 − 𝑎𝑖 𝑙1𝜙1𝑝𝑖 ∈ 𝑍1

⋮

𝑟𝑒𝑠_𝑧𝑅,𝑖+1 = 𝑟𝑒𝑠_𝑧𝑅,𝑖 − 𝑎𝑖 𝑙𝑅𝜙𝑅𝑝𝑖 ∈ 𝑍𝑅

(g) Update the b-parameter:

𝐴†𝑟𝑖+1 = 𝑀† 𝑟𝑒𝑠_𝑦𝑖 + 𝜌 𝑙1𝜙1
† 𝑟𝑒𝑠_𝑧1,𝑖+1 + ⋯+ 𝜌 𝑙𝑅𝜙𝑅

† 𝑟𝑒𝑠_𝑧𝑅,𝑖+1

𝑏𝑖 =
‖𝐴†𝑟𝑖+1‖𝑋,2

2

‖𝐴†𝑟𝑖‖𝑋,2
2

(h) Update the search direction:

𝑝𝑖+1 = 𝐴†𝑟𝑖+1 + 𝑏𝑖 𝑝𝑖 ∈ 𝑋

 UNTIL ‖𝑨†𝒓𝒊+𝟏‖𝑿,𝟐

𝟐
 is 0

74

 Pseudo-code for CGD-algorithm (for least-square problems with multiple terms)

INITIALIZE

Choose an initial guess x0

Choose a machine-epsilon 𝑒𝑝𝑠

Choose a maximal number of iteration 𝑛𝐼𝑡𝑒𝑟_𝑚𝑎𝑥

nIter = 0

res_y_next = 𝑦 − 𝑀 ⋅ 𝑥0

res_z1_next = 𝑧1 − 𝑙1𝜙1 ⋅ 𝑥0

res_z2_next = 𝑧2 − 𝑙2𝜙2 ⋅ 𝑥0

res_z3_next = 𝑧3 − 𝑙3𝜙3 ⋅ 𝑥0

⋮

dagM_res_y_next = 𝑀† ⋅ res_y_next

dagF1_res_z1_next = 𝜌 ⋅ 𝑙1𝜙1
† ⋅ res_z1_next

dagF2_res_z2_next = 𝜌 ⋅ 𝑙2𝜙2
† ⋅ res_z2_next

dagF3_res_z3_next = 𝜌 ⋅ 𝑙3𝜙3
† ⋅ res_z3_next

⋮

dagA_res_next = dagM_res_y_next + dagF1_res_z1_next + dagF2_res_z2_next …

p_next = dagA_res_next

sqn_dagA_res_next = 𝑟𝑒𝑎𝑙{dagA_res_next∗ ⋅ 𝐻𝑋 ⋅ dagA_res_next}

DO

nIter = nIter + 1

res_y_curr = res_y_next

res_z1_curr = res_z1_next

res_z2_curr = res_z2_next

res_z3_curr = res_z3_next

⋮

sqn_dagA_res_curr = sqn_dagA_res_next

p_curr = p_next

IF 𝑠𝑞𝑛_𝑑𝑎𝑔𝐴_𝑟𝑒𝑠_𝑐𝑢𝑟𝑟 < 𝑒𝑝𝑠 BREAK

Mp_curr = 𝑀 ⋅ p_curr

F1p_curr = 𝑙1𝜙1 ⋅ p_curr

F2p_curr = 𝑙2𝜙2 ⋅ p_curr

F3p_curr = 𝑙3𝜙3 ⋅ p_curr

⋮

75

sqn_Mp_curr = 𝑟𝑒𝑎𝑙{Mp_curr∗ ⋅ 𝐻𝑌 ⋅ Mp_curr}

sqn_F1p_curr = 𝑟𝑒𝑎𝑙{F1p_curr∗ ⋅ 𝜌𝐻𝑍1 ⋅ F1p_curr}

sqn_F2p_curr = 𝑟𝑒𝑎𝑙{F2p_curr∗ ⋅ 𝜌𝐻𝑍2 ⋅ F2p_curr}

sqn_F3p_curr = 𝑟𝑒𝑎𝑙{F3p_curr∗ ⋅ 𝜌𝐻𝑍3 ⋅ F3p_curr}

⋮

sqn_Ap_curr = sqn_Mp_curr + sqn_F1p_curr + sqn_F2p_curr + sqn_F3p_curr + …

𝑎 =
sqn_dagA_res_curr

sqn_Ap_curr

x_next = x_curr + 𝑎 ⋅ p_curr

IF 𝑛𝐼𝑡𝑒𝑟 ≥ 𝑛𝐼𝑡𝑒𝑟_𝑚𝑎𝑥 BREAK

res_y_next = res_y_curr − 𝑎 ⋅ Mp_curr

res_z1_next = res_z1_curr − 𝑎 ⋅ F1p_curr

res_z2_next = res_z2_curr − 𝑎 ⋅ F2p_curr

res_z3_next = res_z3_curr − 𝑎 ⋅ F3p_curr

⋮

dagM_res_y_next = 𝑀† ⋅ res_y_next

dagF1_res_z1_next = 𝜌 ⋅ 𝑙1𝜙1
† ⋅ res_z1_next

dagF2_res_z2_next = 𝜌 ⋅ 𝑙2𝜙2
† ⋅ res_z2_next

dagF3_res_z3_next = 𝜌 ⋅ 𝑙3𝜙3
† ⋅ res_z3_next

⋮

dagA_res_next = dagM_res_y_next + dagF1_res_z1_next + dagF2_res_z2_next + …

sqn_dagA_res_next = 𝑟𝑒𝑎𝑙{dagA_res_next∗ ⋅ 𝐻𝑋 ⋅ dagA_res_next}

𝑏 =
sqn_dagA_res_next

sqn_dagA_res_curr

p_next = dagA_res_next + 𝑏 ⋅ p_curr

END DO

76

5 The ADMM-algorithm for the generalized-LASSO problem
An optimization problem that will frequently be encountered in MRI reconstructions is the so called

generalized-LASSO problem

𝑥# ∈ 𝑆𝐿𝐴𝑆𝑆𝑂 ∶= argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜆

2
‖𝜙 𝑥‖𝑍,1

where 𝑆𝐿𝐴𝑆𝑆𝑂 is the set of minimizers of the objective, 𝑋, 𝑌 and 𝑍 are real Euclidean vector spaces of

finite dimension, the 2-norm ‖⋅‖𝑋,2
 is induced by the E-product ⟨⋅ | ⋅⟩𝑋 on 𝑋, the 2-norm ‖⋅‖𝑌,2

 is induced

by the E-product ⟨⋅ | ⋅⟩𝑌 on 𝑌, the 1-norm ‖⋅‖𝑍,1
 is induced by a choice of basis on 𝑍 and the 2-norm

‖⋅‖𝑍,2
 is induced by the E-product ⟨⋅ | ⋅⟩𝑍, 𝑦 ∈ 𝑌 is a parameter, 𝜆 > 0 is a positive number and 𝑀 resp.

𝜙 are homomorphisms given by

𝑀 ∶ 𝑋 ⟶ 𝑌 resp. 𝜙 ∶ 𝑋 ⟶ 𝑍

The following ADMM-algorithm finds a solution of the generalized-LASSO problem and was adapted

from [5] as follows:

INITIALIZE parameters and variables

a) Chose a real positive constant 𝜌.

b) Initialize the variables 𝑥𝑐𝑢𝑟𝑟 , 𝑧𝑐𝑢𝑟𝑟 and 𝑢𝑐𝑢𝑟𝑟

DO

c) 𝑥𝑛𝑒𝑥𝑡 ∈ argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 +
𝜌

2
‖𝜙𝑥 − (𝑧𝑐𝑢𝑟𝑟 − 𝑢𝑐𝑢𝑟𝑟)‖𝑍,2

2

d) 𝑧𝑛𝑒𝑥𝑡 = 𝑝𝑟𝑜𝑥𝜆/𝜚∙‖∙‖𝑍,1
(𝜙 𝑥𝑛𝑒𝑥𝑡 + 𝑢𝑐𝑢𝑟𝑟)

e) 𝑢𝑛𝑒𝑥𝑡 = 𝜙 𝑥𝑛𝑒𝑥𝑡 + 𝑢𝑐𝑢𝑟𝑟 − 𝑧𝑛𝑒𝑥𝑡

f) Update (𝑥𝑐𝑢𝑟𝑟 , 𝑧𝑐𝑢𝑟𝑟 , 𝑢𝑐𝑢𝑟𝑟) ⟵ (𝑥𝑛𝑒𝑥𝑡, 𝑧𝑛𝑒𝑥𝑡, 𝑢𝑛𝑒𝑥𝑡)

UNTIL some stopping-criterion is satisfied

We note the generalized-LASSO problem above is a general formulation that includes the

generalized-LASSSO problem with multiple 1-norm terms. If the problem includes only one 1-norm term,

the least-square sub-problem can be solved with the CGD-algorithm (for least-square problems with

2-terms). If the problem includes multiples 1-norm terms, the least-square sub-problem can be solved

with the CGD-algorithm (for least-square problems with multiples-terms).

77

We also note the symbol “∈” in sub-problem (c). In the original algorithm presented in [5] stands an “=”

symbol instead, suggesting that sub problem (c) should have a single solution. In practice however, the

solution of sub-problem (c) is usually not unique. Instead, we take 𝑥𝑐𝑢𝑟𝑟 and project it orthogonally on

the solution set of sub-problem (c) with the CGD-algorithm in order to obtain 𝑥𝑛𝑒𝑥𝑡. The author ignore if

this process then still leads to an algorithm that converges to a solution of the generalized-LASSO

problem. It is probably a question that needs to be answered.

78

Part III: Discretization

6. Sampling of functions and approximation of norms with their associated

Euclidean-products

In this chapter are done the first approximations. We bring a particular care to the definitions of the

norms on vector-spaces, in order to ensure that these norms are induced, or approximated, by a

sampling-independent norm. Doing so, we ensure that a resampling do not alter the norm of vectors, at

least approximately.

In this first version of the text, part III contains only one chapter. The discretization of space and time

with linear maps from space-time to other domains will be exposed in the next chapters coming in future

versions.

6.1 Sampling

Let be 𝑓(∙) a complex valued functions given by:

𝑓(∙) ∶ ℝ𝑑 ⟶ ℂ

𝑞 ⃗⃗⃗ ⟼ 𝑓(𝑞 ⃗⃗⃗)

where 𝑑 is typically equal to 1, 2, or 3. The variable 𝑞 will be called the position. Let be 𝑛 a positive

integer and let be �⃑�1, … , �⃑�𝑛 a list of positions. We define

𝑓𝑘 ≔ 𝑓(�⃑�𝑘) , 𝑘 = 1,… , 𝑛

The vector

𝑓 ≔ [
𝑓1
⋮
𝑓𝑛

]

will be called the sampling of function 𝑓(⋅) according to the list of positions (or on the positions)

�⃑�1, … , �⃑�𝑛.

6.2 The 2-norm of a vector related to the L2-norm of a function

As it often appears in practice, let be 𝑦 ∈ 𝑌 ≃ ℂ𝑚 the sampling vector of a complex-valued squared-

integrable function 𝑦(∙) defined on ℝ𝑑 and sampled on the positions �⃗� 1, … , �⃗� 𝑚 ∈ ℝ𝑑:

79

𝑦𝑝 = 𝑦(�⃗� 𝑝) for 𝑝 = 1,… ,𝑚

The 𝐿2-norm of the function 𝑦(⋅) is then given by

‖𝑦(⋅)‖𝐿2
2 = ∫ 𝑑𝑘𝑑

ℝ𝑑
|𝑦(�⃗�)|

2

The finite-element approximation of the integral on the sample points 𝑘1
⃗⃗⃗⃗ , … , 𝑘𝑚

⃗⃗ ⃗⃗ ⃗ is

∫ 𝑑𝑘𝑑

ℝ𝑑
|𝑦(�⃗�)|

2
≈ ∑ Δ𝐾𝑝 |𝑦(�⃗� 𝑝)|

2
𝑚

𝑝=1

= ∑ Δ𝐾𝑝 |𝑦𝑝|
2

𝑚

𝑝=1

= ∑ Δ𝐾𝑝 𝑟𝑦𝑝
2 + Δ𝐾𝑝 𝑖𝑦𝑝

2

𝑚

𝑝=1

where the real numbers Δ𝐾1, … , Δ𝐾𝑚 are the volume elements containing each a point of the list

𝑘1
⃗⃗⃗⃗ , … , 𝑘𝑚

⃗⃗ ⃗⃗ ⃗. Typically, Δ𝐾𝑝 can be chosen to be the Voronoi-region of point 𝑘𝑝
⃗⃗⃗⃗ . By choosing 𝑟𝐻 to be the

diagonal-matrix with diagonal-elements Δ𝐾1, … , Δ𝐾𝑚 and 𝑖𝐻 to be the zero-matrix i.e.

𝐻𝑌 = [

Δ𝐾1 0 … 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋱ 0 Δ𝐾𝑛

] = 𝑟𝐻𝑌

we obtain

∑ Δ𝐾𝑝 𝑟𝑦𝑝
2 + Δ𝐾𝑝 𝑖𝑦𝑝

2

𝑚

𝑝=1

= 𝑟𝑦𝑇 ∙ 𝐻 ∙ 𝑟𝑦 + 𝑖𝑦𝑇 ∙ 𝐻 ∙ 𝑖𝑦 = ⟨𝑦|𝑦⟩𝑌 = real(𝑦|𝑦)𝑌 = ‖𝑦‖𝑌,2
2 ≈ ‖𝑦(⋅)‖𝐿2

2

In that case the matrix 𝑆 is given by

𝑆𝑌 = [
𝑟𝐻𝑌 0
0 𝑟𝐻𝑌

]

And we have shown that

‖𝑦‖𝑌,2
 ≈ ‖𝑦(⋅)‖𝐿2

We have defined a H-product on the space 𝑌 by defining the matrix 𝐻𝑌. We have therefore also defined

the associated E-product. These products have a natural signification because their associated 2-norm is

an approximation of the 𝐿2-norm of function defined on 𝑌.

80

We will also make use of similar but different definitions of 2-norms as follows. Let be a vector 𝑥 ∈ 𝑋 ≃

ℂ𝑛 be the sampling of a complex-valued squared-integrable function 𝑥(∙) defined on ℝ𝑑 and sampled on

the positions 𝑟 1, … , 𝑟 𝑛 ∈ ℝ𝑑:

𝑥𝑝 = 𝑥(𝑟 𝑝) for 𝑝 = 1,… , 𝑛

We restrict to the case where the positions sample a uniform (Cartesian) grid.

Informal note: As you probably guess, the positions 𝑟 1, … , 𝑟 𝑛 ∈ ℝ3 are typically the voxel-center

positions of an MRI-image and 𝑥 represent typically the transverse magnetization.

Let be the 𝐿2-norm of the function 𝑥(⋅) given by

‖𝑥(⋅)‖𝐿2
2 ≔ ∫ 𝑑𝑟𝑑

ℝ𝑑
𝜇(𝑟) |𝑥(𝑟)|2

where the positive-valued function 𝜇(⋅) is sufficiently well-behaved so that it defines a measure on ℝ𝑑.

The finite-element approximation of the previous integral on the sample points 𝑟1⃗⃗⃗ , … , 𝑟𝑛⃗⃗ ⃗ is

∫ 𝑑𝑟𝑑

ℝ𝑑
𝜇(𝑟)|𝑥(𝑟)|2 ≈ ∑ Δ𝑉𝑂𝐿 𝜇(𝑟 𝑝) |𝑥(𝑟 𝑝)|

2
𝑛

𝑝=1

= ∑ Δ𝑅𝑝 |𝑥𝑝|
2

𝑛

𝑝=1

= ∑ Δ𝑅𝑝 𝑟𝑥𝑝
2 + Δ𝑅𝑝 𝑖𝑥𝑝

2

𝑛

𝑝=1

where the real positive numbers Δ𝑅1, … , Δ𝑅𝑛 are defined by

Δ𝑅𝑝 ∶= Δ𝑉𝑂𝐿 ⋅ 𝜇(𝑟 𝑝)

and where Δ𝑉𝑂𝐿 is the volume of a cell of the uniform (Cartesian) grid sampled by the positions 𝑟 1, … , 𝑟 𝑛.

By choosing 𝑟𝐻𝑋 to be the diagonal-matrix with diagonal-elements Δ𝑅1, … , Δ𝑅𝑛 and 𝑖𝐻𝑋 to be the

zero-matrix i.e.

𝐻𝑋 = [

Δ𝑅1 0 … 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋱ 0 Δ𝑅𝑛

] = 𝑟𝐻𝑋

we obtain

∑ Δ𝑅𝑝 𝑟𝑥𝑝
2 + Δ𝑅𝑝 𝑖𝑥𝑝

2

𝑛

𝑝=1

= 𝑟𝑥𝑇 ∙ 𝐻𝑋 ∙ 𝑟𝑥 + 𝑖𝑥𝑇 ∙ 𝐻𝑋 ∙ 𝑖𝑥 = ⟨𝑥|𝑥⟩𝑋 = 𝑟𝑒𝑎𝑙(𝑥|𝑥)𝑋

81

= ‖𝑥‖𝑋,2
2 ≈ ‖𝑥(⋅)‖𝐿2

2

In that case the matrix 𝑆 is given by

𝑆𝑋 = [
𝑟𝐻𝑋 0
0 𝑟𝐻𝑋

]

and we have shown that

‖𝑥‖𝑋,2
 ≈ ‖𝑥(⋅)‖𝐿2

This defines a spatially weighted 2-norm. The weighting can be done uniform by choosing 𝜇(⋅) = 1,

which means

Δ𝑋𝑝 ∶= Δ𝑉𝑂𝐿

for all 𝑝.

6.3 The 1-Norm of a vector related to the L1-norm of a function

Please refer to sub-section 3.1 for the definition of the 1-norm on a complex- and real- finite dimensional

vector space.

Let be 𝑧(⋅) a complex valued function given as

𝑧(∙) ∶ ℝ𝑑 ⟶ ℂ

𝑟 ⃗⃗ ⟼ 𝑧(𝑟 ⃗⃗)

and let be 𝑧 ∈ 𝑍 ≃ ℂ𝑛 the sampling of 𝑧(∙) on the position 𝑟1⃗⃗⃗ , … , 𝑟𝑛⃗⃗ ⃗ ∈ ℝ𝑑:

𝑧𝑝 = 𝑧(𝑟𝑝⃗⃗ ⃗) for 𝑝 = 1,… , 𝑛

Let be the real and imaginary part of 𝑧(∙) given by the functions

𝑟𝑧(∙) ∶ ℝ𝑑 ⟶ ℝ

and

𝑖𝑧(∙) ∶ ℝ𝑑 ⟶ ℝ

It holds thus

82

𝑟𝑧𝑝 = 𝑟𝑧(𝑟𝑝⃗⃗ ⃗) and 𝑖𝑧𝑝 = 𝑖𝑧(𝑟𝑝⃗⃗ ⃗) for 𝑝 = 1,… , 𝑛

We assume furthermore that 𝑟𝑧(∙) and 𝑖𝑧(∙) are absolutely-integrable meaning that the integrals

∫ 𝑑𝑟𝑑 𝜇(𝑟)|𝑟𝑧(𝑟)|

ℝ𝑑 and ∫ 𝑑𝑟𝑑 𝜇(𝑟) |𝑖𝑧(𝑟)|

ℝ𝑑

both have finite values and where 𝜇(𝑟) is a sufficiently well-behaved positive-valued function so that it

defines a measure on ℝ𝑑. We assume that Δ𝑉𝑂𝐿 is the volume of the Voronoi-regions of each of the

points 𝑟1⃗⃗⃗ , … , 𝑟𝑛⃗⃗ ⃗ ∈ ℝ𝑑. This is typically the case when 𝑟1⃗⃗⃗ , … , 𝑟𝑛⃗⃗ ⃗ are located on a uniform (Cartesian) grid

(such as the pixel-centers of a picture), in which case Δ𝑉𝑂𝐿 is the volume of each cell of the grid. The

finite-element approximation of the previous integrals are then

∑ Δ𝑍𝑝 ⋅ |𝑟𝑧𝑝| 𝑁
𝑝=1 and ∑ Δ𝑍𝑝 ⋅ |𝑖𝑧𝑝| 𝑁

𝑝=1

where

Δ𝑍𝑝 = 𝜇(𝑟 𝑝) Δ𝑉𝑂𝐿

We define the sampling-independent 𝐿1-norm ‖⋅‖𝐿1 of the function

𝑟 ⟼ [
𝑟𝑧(𝑟)

𝑖𝑧(𝑟)
]

as

‖[
𝑟𝑧(∙)
𝑖𝑧(∙)

]‖
𝐿1

≔ ∫ 𝑑𝑟𝑑 𝜇(𝑟) (|𝑟𝑧(𝑟)| + |𝑖𝑧(𝑟)|)

ℝ𝑑
= ‖𝑟𝑧(⋅)‖𝐿1 + ‖𝑖𝑧(⋅)‖𝐿1

[6.3.1]

This is the most natural 𝐿1-norm defined for vector-valued function having each component

absolutely-integrable since any pair of norms ‖⋅‖𝑈 (defined on a space 𝑈) and ‖⋅‖𝑊 (defined on a space

𝑊) naturally induce the norm ‖⋅‖𝑈×𝑊 (defined on the space 𝑈 × 𝑊) defined by

‖[
𝑢
𝑤

]‖
𝑈×𝑊

≔ ‖𝑢‖𝑈 + ‖𝑤‖𝑊 ∀ [
𝑢
𝑤

] ∈ 𝑈 × 𝑊

Since the value of this norm depends only of the function, it is sampling-independent.

This definition of the 𝐿1-norm of vector valued function is particularly suited for our needs since the

finite-element approximation of [6.3.1] is given by

83

‖[
𝑟𝑧(∙)
𝑖𝑧(∙)

]‖
𝐿1

= ∫ 𝑑𝑟𝑑 𝜇(𝑟) (|𝑟𝑧(𝑟)| + |𝑖𝑧(𝑟)|)

ℝ𝑑
≈ ∑ Δ𝑍𝑝 |𝑟𝑧𝑝| + Δ𝑍𝑝 |𝑖𝑧𝑝|

𝑛

𝑝=1

= ‖𝑧‖𝑍,1 = ‖𝐻𝑍 𝑧‖ℂ𝑛,1

where 𝐻𝑍 is the diagonal matrix

𝐻𝑍 = [
Δ𝑍1 0 0
0 ⋱ 0
0 0 Δ𝑍𝑛

]

We have thus

‖[
𝑟𝑧(∙)
𝑖𝑧(∙)

]‖
𝐿1

≈ ‖𝑧‖𝑍,1 = ‖𝐻𝑍 𝑧‖ℂ𝑛,1

This shows that the 1-norm ‖⋅‖𝑍,1 on the vector space 𝑍 is an approximation of a sampling-independent

norm.

We never use the 1-norm ‖⋅‖𝐿1in practice. The reason why we define that norm is because it provides a

number close to ‖𝑧‖𝑍,1 independently of the sampling. If we assume another sampling

𝑟1
′⃗⃗ ⃗, … , 𝑟𝑛′

′⃗⃗⃗⃗ ⃗ ∈ ℝ𝑑

on another Cartesian grid with cell volume Δ𝑍′, we obtain a different sampling 𝑧′ ∈ 𝑍′ ≃ ℂ𝑛′
 of the

same function 𝑧(⋅). But for the associated 1-norm ‖⋅‖𝑍′,1 still holds

‖[
𝑟𝑧(∙)
𝑖𝑧(∙)

]‖
𝐿1

≈ ‖𝑧′‖𝑍′,1

and therefore

‖𝑧‖𝑍,1 ≈ ‖𝑧′‖𝑍′,1

The definition of the sampling independent 𝐿1-norm ‖⋅‖𝐿1 allows thus to induce a weighted 1-norm on

𝑍 that is approximately independent of the chosen Cartesian sampling.

We note moreover that the diagonal matrix 𝐻𝑍, which defines the 1-norm, naturally induce an E-product

⟨⋅ | ⋅⟩𝑍 on 𝑍. It is important that the matrices defining the E-product on 𝑍 and the one norm on 𝑍 co-

inside i.e. are both equal to 𝐻𝑍 in order to guaranty that the proximal operator of the 1-norm is equal to

84

the soft-thresholding described in section 3.1 and remain independent of 𝐻𝑍. If they are note, the soft-

thresholding becomes component-dependent and we don’t treat that case.

In the rest of the text, we will always assume the following.

Every time we encounter a 1-norm ‖⋅‖𝑍,1 on a 2𝑛-dimensional vector space 𝑍, it will be assumed

that this 1-one norm is of the form

‖𝑧‖𝑍,1 = ‖𝐻𝑍 𝑧‖ℂ𝑛,1

with real positive-definite diagonal 𝑛 × 𝑛 matrix

𝐻𝑍 = [
Δ𝑍1 0 0
0 ⋱ 0
0 0 Δ𝑍𝑛

]

which is simultaneously the hermitian matrix of the E-product ⟨⋅ | ⋅⟩𝑍 on 𝑍. In that case, the

proximal operator associated to the 1-norm is given by

𝑝𝑟𝑜𝑥𝑠∙‖∙‖𝑍,1

 (𝑧) = 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑟𝑧) + 𝑗 𝑝𝑟𝑜𝑥𝑠∙‖⋅‖ℝ𝑛,1

 (𝑖𝑧)

85

Appendices

A. Counter-example to uniqueness of the solution of the generalized-LASSO

problem
We consider 𝑋 = 𝑌 = 𝑍 = ℂ2 and we consider the homomorphism

𝑀 ∶ 𝑋 ⟶ 𝑌 = 𝑋

𝑥 ⟼ 𝑀𝑥

given by the matrix

𝑀 = √
2

5
 [
1 1
2 2

] or alternatively ℛ𝑀 = √
2

5
[

1 1 0 0
2 2 0 0
0 0 1 1
0 0 2 2

]

We chose 𝜙 = 𝑖𝑑𝑋 so that Ker(𝜙) = {0} and thus 𝐿 ≔ 𝐾𝑒𝑟(𝑀) ∩ 𝐾𝑒𝑟(𝜙) = {0}. We choose the

canonical E-product on 𝑋. We chose 𝜆 = 2 and 𝑦 ∈ ℂ2 by

𝑦 = √
2

5
[

𝜁
2 𝜁

]

where 𝜁 ∈ ℝ so that 𝑖𝑦 is 0. Moreover we write 𝑥 as

𝑥 = [
𝛼
𝛽] ∈ ℂ2

with 𝛼, 𝛽 ∈ ℂ. We define then the objective function of our generalized-LASSO problem as

𝑓(𝑥) ≔
1

2
‖𝑀 𝑥 − 𝑦‖𝑋,2

2 +
𝜆

2
‖𝜙 𝑥‖𝑍,1 =

1

2
‖𝑀 𝑥 − 𝑦‖ℂ2,2

2 +
2

2
‖𝑥‖ℂ2,1

=
1

2
‖√

2

5
[

𝛼 + 𝛽 − 𝜁
2𝛼 + 2𝛽 − 2𝜁

]‖

ℂ2,2

2

+ ‖[
𝛼
𝛽]‖

ℂ2,1

=
1

5
 |𝛼 + 𝛽 − 𝜁|2 +

4

5
 |𝛼 + 𝛽 − 𝜁|2 + |𝛼| + |𝛽|

86

= |𝛼 + 𝛽 − 𝜁|2 + |𝛼| + |𝛽|

 We note now that

𝑓(𝑥) = |𝛼 + 𝛽 − 𝜁|2 + |𝛼| + |𝛽| = |𝑟𝛼 + 𝑟𝛽 − 𝜁|2 + |𝑖𝛼 + 𝑖𝛽|2 + |𝛼| + |𝛽|

≥ |𝑟𝛼 + 𝑟𝛽 − 𝜁|2 + |𝑟𝛼| + |𝑟𝛽| = 𝑓(𝑟𝑥)

 The set of minimizer of 𝑓(⋅) is thus purely real. Hence we can restrict 𝛼 and 𝛽 to real values. We

 define the substitute variable

𝑢(𝛼, 𝛽) ≔ 𝛼 + 𝛽 so that 𝛼 = 𝑢 − 𝛽

 Then is

𝑓(𝑟𝑥) = |𝑢 − 𝜁|2 + |𝑢 − 𝛽| + |𝛽|

 Since the objective function of the generalized-LASSO problem always reaches its infimum, there

 exists some minimizer

𝑥# = 𝑟𝑥# = [
𝛼#

𝛽#] ∈ ℝ2

 So that

inf
𝑥∈ℂ2

𝑓(𝑥) = |𝑢# − 𝜁|
2
+ |𝑢# − 𝛽#| + |𝛽#|

 where 𝑢# = 𝛼# + 𝛽#. We can assume without limit of generality that 𝑢# > 0 because we can

 always chose 𝜁 large enough so that the value of 𝑢# is forced to be larger than 0. It holds

 moreover

𝛽# = argmin
𝛽∈ℝ

|𝑢# − 𝛽| + |𝛽|

 We observe that

|𝑢#| = |𝑢# − 𝛽 + 𝛽| ≤ |𝑢# − 𝛽| + |𝛽|

 By choosing 𝛽 ∈ [0, 𝑢#] it holds then

|𝑢# − 𝛽| + |𝛽| = 𝑢# − 𝛽 + 𝛽 = 𝑢# = |𝑢#| = min
𝛽′∈ℝ

|𝑢# − 𝛽′| + |𝛽′|

87

 As a consequence, 𝛽# can take any value in the interval [0, 𝑢#] and the minimizer is not unique.

∎

88

References
[1] S. Boyd and L. Vandenberghe, Convex Optimization, 1st ed. Cambridge University Press, 2004. doi:

10.1017/CBO9780511804441.
[2] M. R. Hestenes and E. Stiefel, ‘Methods of conjugate gradients for solving linear systems’, J. RES.

NATL. BUR. STAN., vol. 49, no. 6, p. 409, Dec. 1952, doi: 10.6028/jres.049.044.
[3] S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing. in Applied and

numerical harmonic analysis. New York: Birkhäuser, 2013.
[4] G. Giacchi, B. Milani, and B. Franchieschiello, ‘On the determination of optimal tuning parameters

for a space-variant LASSO problem using geometric and convex analysis techniques’, 2023, doi:
10.48550/ARXIV.2301.09083.

[5] S. Boyd, ‘Distributed Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers’, FNT in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010, doi: 10.1561/2200000016.

