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Introduction: the analysis and the synthesis 

The fundamental idea of Fourier analysis is probably much older than Monsieur Fourier and is present in 

all areas of mathematics, of natural sciences, in medicine, in philosophy, in alchemy and other areas of 

the human mind. It is the idea of the “Analysis” and the “Synthesis”. Or in one word: “Atoms”. It is the 

idea that anything in this word is a combination of fundamental parts, of fundamental ingredients. The 

decomposition of an object (a body, a piece of a material, a something…) into the fundamental 

ingredients is the analysis. The result of the analysis tells which quantity of each ingredient is present in 

the object. That list of quantity is the spectrum. And given a spectrum, the combination of the 

ingredients with their correct respective quantities in order to form the object is the synthesis. Every 

time one hears about a spectrum, it means that some decomposition into fundamental ingredients is 

going on. When Richard Feynman says in the introduction of his “Feynman lectures on Physics” that if 

the humanity had to save the most essential thing we have learned about nature on a little piece of 

paper, we should write that the world is made out of atoms, I thought first that it was about the material 

physical world only. But I am now tempted to think that what Feynman wanted to say (consciously or 

unconsciously) by “atoms” is that the world is a combination of a few ingredients. The notes of the 

music. And that the richness of the world arises out of the richness of the combinations. The accords. As 

if the relations between the notes carry a richness that it not present in the notes taken individually. This 

idea is so present in sciences, and probably in nature itself if we believe that science describes the 

nature, that the idea of atoms is one of the most important things human have discovered.  

What Joseph Fourier was able to realize, in his work on the series and integral transform of his name, is 

to identify the atoms of some families of functions, and to find out which quantity of each atom is 

present in a given function. He found out the magic formulas to decompose a function in fundamental 

vibrations (or notes), and how to build a functions from its spectrum. The spectrum of a periodic 

function is made out of its Fourier coefficient, and the synthesis is realized by the Fourier serie. The 

spectrum of a “sufficiently fast decreasing” function is given by its Fourier transform and the synthesis is 

realized by the inverse Fourier transform. That being said, it is now clear that we should say “Fourier 

analysis and synthesis” to be precise but we will keep the title “Fourier analysis” for short.  

It is however none of the Fourier coefficients or the Fourier transform that we use in modern digital 

systems for signal processing, medical image reconstruction, telecommunication…. It is the discrete 

Fourier transform (DFT), a discrete version of the Fourier transform. Astonishingly, the DFT was not 

invented together with the use of modern computers. In fact the mathematician Gauss already made use 
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of it by hand in his calculation for astronomical observations and some sources even suggest that antic 

civilization were using it in some form. But it is only since 1965 that the DFT began to impact our world in 

such a way like today. What happened in 1965 is that Cooley and Tukey re-discovered the fast-Fourier-

transform (FFT) algorithm (which evaluates the DFT in a rapid way) without knowing that it was already 

invented by Gauss (again) in 1805. But in contrast to Gauss, Cooley and Tukey had computers to take 

even more advantage of the rapidity of the FFT. While the matrix multiplication that realizes the DFT 

needs a number of operations that scales with    for a data vector of size  , the FFT algorithm leads to 

the same answer with a number of operations scaling with         . The gain of time is so that it makes 

some technologies possible, which would be completely impossible without the FFT. The impact on our 

societies was so that, as Brad Osgood says in his course (“The Fourier Transform and its Applications”, 

Electrical engineering department, Stanford University): “According to some, the modern world began in 

1965 when J. Cooley and J. Tukey published their account of an efficient method for numerical 

computation of the Fourier transform“. This should give a feeling about the importance of the DFT.  

For the present course, we will divide the Fourier analysis in three variants. I gave here some names to 

these three variants but those names are not official:  

- Periodic Fourier analysis: The Fourier coefficients and the associated Fourier serie for periodic 

functions,  

- Non-periodic Fourier analysis: The Fourier transform and the inverse Fourier transform for non-

periodic functions,  

- Discrete Fourier analysis: The discrete Fourier transform and the inverse discrete Fourier 

transform for vectors of finite dimension.  

The objects we decompose with the periodic Fourier analysis are periodic functions. Not all periodic 

functions can be decomposed but a large family of them. Moreover, not all periodic function can be 

synthetized with periodic Fourier analysis and the synthesis is never perfect. How good is the synthesis, 

is something difficult to quantify and mathematician have invented different kind of convergence-type to 

qualify how a synthesis approaches the function of interest. But this is out of the scope of this course.  

The objects we decompose with non-periodic Fourier analysis are functions that converge “sufficiently 

rapidly” to zero as the argument becomes arbitrary large in norm. What “sufficiently rapidly” means is 

something subtle and the interested student may take a look at the “Schwartz space” and the space of 

“quadratic integrable functions”. The synthesis is also problematic. For example, a function may accept a 
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Fourier transform (a spectrum) but the inverse Fourier transform of the spectrum may not converge 

everywhere. That means that synthetizing back the functions from its spectrum do not always work 

perfectly. But again, we will not go into that kind of detail in the present course.  

The objects we decompose with the discrete Fourier analysis (DFT) are vectors of finite dimension and 

the DFT (as well as its inverse) are linear maps of vector spaces. This is what we need in concrete 

applications, and fortunately, it is mathematically much simpler than periodic and non-periodic Fourier 

analysis because we stay in the area of linear algebra. There is therefore no convergence problems in this 

area. The DFT and its inverse are well defined for any vector and the inverse DFT is exactly what it 

means: the inverse linear map of the DFT.  

After having introduced some needed definitions and notions in part I, we will achieve the two major 

goals of this course in part II and part III:  

- The first is to teach how to approximate the Fourier transform of a function by mean of the 

discrete Fourier transform via the use of an FFT implementation.  

- The second is to highlight what are the precise relations between the discrete Fourier transform, 

the Fourier transform, and the Fourier serie. We will describe those relations by mean of the 

convolution product with some appropriate convolution kernels. We show that this can be done 

without any knowledge about distribution theory.  
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Part I: Background Notions and Definitions 

Functions on the  -space and on the  -space 

We assume that the reader is already familiar with many functions and with the use of variables. We will 

work with functions which accept as argument a 1-dimentional real variable. That mean that the 

definition domain of the functions we will work with is equal to  . We will briefly generalize some 

expressions for  -dimensional real variables in one section but all the rest of the text will focus on the  -

dimensional case.  

We will use two different definition domains for all our function. These two definition domains are both 

equal to  , but we will call one the  -space and the other the  -space. They are therefore different 

because they differ at list by their name. We could say that they are two different copies of  . We will 

usually write   a variable in the  -space and we will call it a “position” (or a “time”). We will usually write 

  a variable in the  -space and we will call it a “spatial frequency” (or a “temporal frequency”) or just a 

“frequency” for short.  

We will usually write functions with the “dot-bracket” notation such as      in order to stress the fact 

that it is a function and not a number. We will sometimes renounce to that notation and just write   

instead if the “dot-bracket” becomes unpractical. 

To define a real- or complex-valued function      on the  -space we will typically write 

       

       

where      or     . To define a function      on the  -space we will typically write 

       

       

Because the author is a physicist, we will consider that any position   has an associated unit which is the 

meter   (or the second   for a time). Similarly, any frequency   has a unit which is     for a spatial 

frequency (or     for a time frequency).  

The product     is therefore without unit and we will consider the number  
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to be an angle given in radian. We note that when   is a time, it is usually written   and the time-

frequency is written  . Some authors work in this case sometimes with the angular frequency   given by 

        

The corresponding angle is then  

               

Periodic functions, non-periodic functions and normalized functions 

Le be      or       and let  

       

       

be a real- or complex-valued function. Given a positive length   in meter (or a duration   in second),      

is called “ -periodic”, or “of period  ” if 

            

for any    . We will say that a function is “periodic” if there exist a positive number     so that the 

function is  -periodic. That      is “non-periodic” obviously means that it is not periodic.  

We will say that the  -periodic function      is “normalized” if  

∫        

    

    

   

We note that we did not wrote |    | or |    |  in the integrand. It is really about the functions values 

themselves.  

We will say that a function      “converges to   at infinity” if 

   
     

         
     

        

If      is not periodic, we will say that it is “normalized” if 
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∫        

  

  

   

provided that the integral converge. It can only converge if      decreases to   at infinity “sufficiently 

rapidly”. We will not define what “sufficiently rapidly” means. For us it will just mean “rapidly enough so 

that the integral converges”. The interested reader may explore what is the Schwartz space.  

Trigonometric functions, standard grids and sampling 

We will assume that the reader is already familiar with trigonometric functions. We will give here some 

relations between them and some indication about how we will use them.  

We will write   the square root of   . The Euler equation gives then the relation 

                     

From 

         

follows 

                                 

                                  

The expressions             and             can then be written in terms of complex exponential 

functions as 

            
 

 
                    

            
 

  
                    

The         and         functions are of period    (or   -periodic) It follows that the functions 

      

       

are both   -periodic. One can then check that the four functions 
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are periodic with period    . Alternatively, we can say that they are of frequency  .  

We now set a given length  . Because the         and         functions are   -periodic, are the functions 

               

               

           

            

all  -periodic. To the length   (or duration  ) we associate the fundamental frequency    given by 

       

We define the “discrete frequencies” as the integer multiples of the fundamental frequency given by 

            ,     

The positive integer multiples of the fundamental frequency are called the “harmonic frequencies” or 

just “harmonics” for short. Assuming   to be non-zero, the following two functions are then both of 

period     (i.e. of frequency   ):  

                  (  
 

 
 )  

                   (  
 

 
 ) 

If     is              constant and equal to  , while              is constant and equal to  . These 

two functions can be written in terms of the two complex-valued functions 
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which are both of period     (i.e. of frequency   ), except for     in which case they are constant 

and equal to  .  

Let be   an even positive integer, so that     is a positive integer too. We define  

       

as well as  

        

We will call the finite set 

       {  |   {            }} 

the “standard  -grid”. We associate to that grid the interval  

               

which is closed on the left and open on the right. It is an interval of length   centered in  . We note that   

         

We also define  

     
 

 
       

Then is   equal to      . We not that       is in    but      is not.  

We have so far define the standard  -grid. We now define similarly the standard  -grid. We have already 

defined 

       

as well as  

        

We will call the finite set 
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       {  |   {            }} 

the “standard  -grid”. We associate to that grid the interval  

                 

where 

     
 

 
   

Again, the interval    is closed on the left and open on the right. It is an interval of length       

centered in  . We note that   

         

We note also that       is in    but      is not. For convenience, we define 

         

It is the analogous of   in  -space. We will call   the “FoV” (for “field of view”) and we will call   the 

“ -FoV”. We have 

   
 

 
   and      

 

 
 

The standard grids are defined so that 

      
 

 
 

and therefore 

       
   

 
 

These two relations are a key for defining the discrete Fourier transform.  

Let be      a function (periodic or not) defined on the  -space. We define then the vector  ⃗ to be the 

column vector with components 

          with           
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The matrix representation of  ⃗ is 

[
 
 
 
 
 
     

 
   

  
 

      ]
 
 
 
 
 

 

We will call vector  ⃗ the sampling of function     . Similarly, given a function      on the  -space, we 

define then the vector  ⃗ to be the column vector with components 

          with           

The matrix representation of  ⃗ is 

[
 
 
 
 
 
     

 
   

  

 
      ]

 
 
 
 
 

 

We will call vector  ⃗ the sampling of function     .  

The standard grids can be summarized as follows.  

 

 

 

 

  
𝑘𝑚 𝑥𝑛   

𝑚 𝑛

𝑁
 

Δ𝑘 Δ𝑥  
 

𝑁
 

Given 𝑁 even and 𝑛 𝑚  { 𝑁     𝑁    }, then 

Δ𝑘  
 

𝐿
  

 

 𝑥𝑚𝑎𝑥
 

𝑊

𝑁
   Δ𝑥  

 

𝑊
  

 

 𝑘𝑚𝑎𝑥
 

𝐿

𝑁
 

𝑘𝑚  𝑚  𝑘    𝑥𝑛  𝑛  𝑥 

𝑘     Position 𝑁     𝑥    
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The Dirichlet kernels 

We define here the “Dirichlet kernels” as well as some variants that we will also call “Dirichlet kernels”, 

although it is not an official practice. All these kernels are actually functions. But we call them “kernels” 

to stress the fact that we will use them in “convolutions” with other functions, as described later in the 

course where convolutions are defined.  

We define the  -th Dirichlet kernel       as  

       ∑      

 

     

  {
   ((  

 

 
) )     (

 

 
 )                         

  
                        

} 

We note that the sum is symmetric and the definition can alternatively be given by 

       ∑     

 

     

 

It holds in fact 

              

This is the official definition, but for compatibility with the discrete Fourier transform presented later, we 

will work with     instead of   (where   is considered to be an even number). It holds 

         ∑      

   

       

 {
   ((

 

 
 

 

 
)  )     (

 

 
 )                         

  
                       

} 

The Dirichlet kernels are all real-valued and periodic with period   . For a later use, we define the 

“symmetric Dirichlet kernel of period  ” by 

   
                           ∑         

   

       

 

In that definition, the period   is hidden in the fundamental frequency    which is equal to    . The 

name “symmetric Dirichlet kernel of period  ” is not official. We use it here for convenience. We added 

to adjective “symmetric” to stress the fact that it is defined by a symmetric sum      to    , since we 

will define other kernel with an asymmetric sum.  
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Substituting    by    in the definition of    
      , and remembering that         is equal to     , 

we get the “symmetric Dirichlet kernel of period  ” defined on  -space:  

   
                           ∑          

   

       

 

This is actually just a redefinition of    
      . In fact, substituting   by   (or inversely) in one leads the 

other. The definitions are chosen so that     
       and    

       are normalized:  

∫    
      

   

    

     

∫    
      

    

     

     

We get finally the “assymetric Dirichlet kernel of period  ” by mean of the asymmetric sum 

 

 

and the similarly “assymetric Dirichlet kernel of period  ”  

 

 

We see that    
       resp.    

       are the same like    
       resp.    

       up to a high frequency 

oscillation of small amplitude     resp.   .  

An important fact is that the oscillation            do not contribute to the “area under the curve” of the 

complex-valued function    
       because it holds 

∫            

   

    

      

𝒜Δ𝑘
𝑁   𝑥   Δ𝑘 ∑ 𝑒 𝑖 𝜋 𝑘𝑚𝑥

𝑁    

𝑚   𝑁  

  𝒮Δ𝑘
𝑁   𝑥   Δ𝑘 𝑒𝑖 𝜋 𝑘𝑚𝑎𝑥𝑥 

𝒜Δ𝑥
𝑁   𝑘   Δ𝑥 ∑ 𝑒 𝑖 𝜋 𝑥𝑛𝑘

𝑁    

𝑛   𝑁  

  𝒮Δ𝑥
𝑁   𝑘   Δ𝑥 𝑒 𝑖 𝜋 𝑥𝑚𝑎𝑥𝑘  
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The same remark holds for the integration from       to      of            . The two asymmetric 

kernels are therefore normalized.  

∫    
      

   

    

     

∫    
      

    

     

     

In summary, we have:  

- two symmetric, real-valued, normalized kernels: one of period   on the  -space and one of 

period   on the  -space,  

- two asymmetric, complex-valued, normalized kernels: one of period   on the  -space and one of 

period   on the  -space.  

The complex-valued asymmetric kernels are almost real-valued if we neglect the small complex-valued 

high frequency oscillation of amplitude    resp.   .  

The following figures displays a symmetric Dirichlet kernel,   

while the following displays an asymmetric one. 
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The door functions 

We define the big-door function of width   (and centered in  ) as  

        

           {

       
           
      

} 

The big-door function of width   centered in   is simply given by  

          

We define the little-door function of width   (and centered in   as)       by 

       
 

 
      

We observe that the door functions are not exactly symmetric due to the asymmetry in the inequalities 

in their definitions. In fact is    the characteristic function of interval   , which is closed on the left but 

open on the right.  
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The little-door function is normalized in the sense that 

∫        

  

  

   

while the big-door function is not normalized (except if   equals  ) and it holds 

∫        

  

  

   

Note finally that for       is the graph of the little-door function is “taller” than the one of the big-

door function. “Big” and “little” are just names. The following figure displays de graph of a little-door 

function 

The sinus-cardinal functions 

The         function (sinus-cardinal) is given by 

         {
           

    
} 

More generally, we will also name “       -function” any variant given by 
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with real parameters   ,   and  . As we will see later, the         function 

             

is the Fourier transform of      .The following figure displays the graph of a         function 

 

The Gaussian functions 

We will name “Gaussian-function” or just “Gaussian” any function of the form 

     
 

 
           

 

with real parameters  ,  ,   and  . In the special case where 

   
 

√    
   and      

is the corresponding Gaussian normalized in the sense that 

∫
 

√    
  

 
 

         
  

  

   

This Gaussian function can then be interpreted as a probability distribution (called “normal 

distribution”) with mean   and variance   . We will work in particular with the Gaussian       define by 
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√    
  

 
 

     

 

which is a normal probability distribution with mean   and variance   . As we will see, its Fourier 

transform is the function        given by 

                 
 

which is also a Gaussian, but which is not normalized and is therefore not a probability distribution. The 

following figure displays the graph of a Gaussian function.  

 

Some function operations 

Just as numbers, real- and complex-valued functions can be added, subtracted and multiplied (we will 

not go into the division of a function by another). But unlike numbers, we can perform many more 

operation on and between them. We give here a few that are useful for our purpose.  

Let be two real- or complex-valued functions      and      defined on the line of real numbers. We 

define the new function {   }    as 

{   }              
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We define the new function {   }    as 

{   }              

The subtraction can be defined similarly if needed. Given the big-door function       of width  , we 

define the crope of      of width   by the new function        given by 

                    {

       
              

      
} 

We observe the subtle asymmetry of the inequalities in the definition.       is in fact the indicator 

function of the interval   , which is asymmetric. 

The following figure displays the graph of the asymmetric Dirichlet kernel    
       on the left and of its 

crope      
       of width        so that the “remaining” part of      

       correspond to one 

period of    
      . The real part is in blue and the imaginary part in red.  

 

 

 

 

 

 

 

Given a real number  , we define the shift of      by   as new function        given by 

              

Depending on the context, we will also write        as        if it is more practical.  

Given a function     , we define its periodic summation of period   as the new function   
      given by 
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       ∑        

 

    

 ∑        

 

    

  

The periodic summation of a function is not necessarily well defined. The previous serie must converge 

for every   for the periodic summation to exist.  

For example, if      is identically equal to  , the serie defining   
      diverges for every  . But the serie 

will converge if      converges to   rapidly enough at infinity on both sides. If the serie converges for 

every   is then   
      a function of period  .  

Given a function     , we define its periodic extension of period   as the new function   
      given by 

  
         

         ∑          

 

    

  ∑          

 

    

 

While the periodic summation do not always exists, the periodic extension always exists and is a function 

of period  . The periodic extension is obtained by cropping the function with width   and then 

replicating it on both sides of the  -axis with period  .  

Given a function that converges to   sufficiently rapidly, we have (at least) two ways to fabricate a 

periodic version of it: the periodic summation and the periodic extension. For any other function, the 

periodic extension “does the job”.  

We note finally that a function      is periodic of period   if and only if it is identical to its periodic 

extension of period  . In that case holds  

        
       ∑           
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The following figure shows the graph of a function (in blue) together with the graph of its periodic 

extension (in red) and its periodic summation (in green):  

There is a very important operation called the “convolution” which is related to the Fourier transform in 

a special way. The convolution of      and      is a new function that we will write {   }    but we will 

defined it later in the course.  

We note at that point that the Fourier transform (resp. its inverse) is also an operation which takes as 

argument a function      defined on  -space (resp. a function      defined on  -space) and return 

another function       defined on  -space (resp. a function         defined on  -space).  
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Part II: Fourier analysis 

Periodic Fourier analysis: The Fourier coefficient and the associated Fourier serie 

The objects to be decomposed in the context of periodic Fourier analysis are periodic functions. The 

analysis of periodic functions is done by evaluating its Fourier coefficients. In the present case, the 

spectrum is the list of Fourier coefficients. The synthesis is achieved by building back the function from 

its Fourier coefficients. This is done by building the Fourier serie. There is one version of the theory for 

real-valued functions and another for complex-valued function. We present both.  

Let be      a real-valued periodic function of period   defined on the set of real numbers:  

       

       

We define the real Fourier coefficients of      as 

    
 

 
∫        

   

    

 

    
 

 
∫                     

   

    

 

    
 

 
∫                     

   

    

 

for           . The evaluation of these coefficients constitutes the analysis. The list 

                 

is the spectrum. For symmetry reasons, one can also add      in the spectrum. Then can the spectrum 

be seen as a function defined on the set of non-negative discrete frequencies 

{  |                } 

i.e. the fundamental frequency and its harmonics. If seen as a function, the spectrum can be written:  
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   (
  

  
) 

This spectrum can be represented graphically by writing the discrete frequencies on the horizontal axis 

and the Fourier coefficients on the vertical axis.  

We define the function      
   

     as 

     
   

           ∑                              

   

    

  

and we call it the “real Fourier serie with       terms” for function     . The evaluation of this 

function constitutes the synthesis. As indicated by its name, it is the real Fourier serie. The synthesis is 

not exactly equal to the original function      but improves as   becomes larger and larger.  

Because this serie is partial (we do not consider the limit with   going to infinity) we may also call 

     
   

     a partial Fourier serie. Theoretician also work with the complete serie by including all the terms 

(an infinite number of terms) and this is what we call the (true) real Fourier serie. But we will only 

consider partial Fourier series in this course for the sake of applicability.  

The real Fourier serie with real coefficient is however limited to the analysis of real periodic functions. 

The complex version of the analysis allows to handle both real and complex valued periodic functions 

and we will therefore only work with the complex version in the rest of the text. Here it is.   

Let be      a complex-valued periodic function of period   defined on the line of real numbers:  

       

       

We define the (complex) Fourier coefficient of      as 

 

 

and we define the function   
        as 

 

𝑐𝑚  
 

𝐿
∫ 𝑓 𝑥 𝑒 𝑖 𝜋 𝑘𝑚𝑥

 𝐿  

 𝐿  
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that we will call the “Fourier serie of      with     terms”. The list of Fourier coefficients constitute 

the spectrum and it can be seen as a function defined on the set of discrete frequencies 

{  |            } 

If seen as a function, the spectrum can be written 

      

We note that the definitions are simpler in the complex case than in the real case. It seems that 

“complex” do not means “complicated”.  

In general, a complex valued periodic function can only be analyzed in terms of complex Fourier 

coefficients. But a real valued function can be analyzed both in terms of complex and real Fourier 

coefficients. For that special case holds 

          

             

and 

   
 

 
          

    
 

 
            

  

where the star symbol    stands for the complex conjugate of a complex value. We note that the sum 

defining   
        is symmetric in the sense that it starts at index      and ends at index     . We 

will therefore also refer to   
        as the “symmetric Fourier serie with     terms” for function  

    .  

The reason why we introduce the adjective “symmetric” is that we will also need a slightly different serie 

for the description of the discrete Fourier transform. We define for that purpose the “asymmetric 

Fourier serie with   terms” for function       as 

𝒮 
𝑁  𝑓 𝑥    ∑ 𝑐𝑚 𝑒𝑖 𝜋 𝑘𝑚 𝑥

𝑁  

𝑚   𝑁  
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It is the same like   
        but with the last term missing. It is also a synthesis which approaches 

function      as   becomes larger and larger. It is maybe not as good as   
        because one term is 

missing. But it is probably as good as   
           . We will come back to that asymmetric serie in the 

section about the discrete Fourier transform.  

Let be      and      two periodic functions of period   and let be       the  -th Fourier coefficient of 

     as well as       the  -th Fourier coefficient of     . The Parseval-Plancherel identity for periodic 

functions reads then 

 

 
∫     ̅̅ ̅̅ ̅̅         

   

    

  ∑      ̅̅ ̅̅ ̅̅ ̅̅       

  

     

 

We define the bracket ⟨ |  ⟩  by 

⟨    |    ⟩   
 

 
∫     ̅̅ ̅̅ ̅̅         

   

    

 

which is an inner product of vector spaces under some conditions. Let be 

                                           

                                           

We define then the bracket ⟨ |  ⟩  by 

⟨    |    ⟩   ∑       ̅̅ ̅̅ ̅̅ ̅̅

  

     

      

which is an inner product of vector spaces under some conditions. Then reads the Parseval-Plancherel 

theorem 

𝒜𝑁  𝑓 𝑥   ∑ 𝑐𝑚 𝑒𝑖 𝜋 𝑘𝑚𝑥

𝑁    

𝑚   𝑁  
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⟨    |    ⟩   ⟨    |    ⟩  

The map that send a function      to its list of Fourier coefficients is in that case an isometry, the 

definitions 

‖    ‖   
   ⟨    |    ⟩   

‖    ‖   
   ⟨    |    ⟩   

define some  -norms and the Parseval-Plancherel identity leads to  

‖    ‖   
   ‖    ‖   

  

We terminate this section with two examples. We empirically deduce some general rules out of these 

examples without proving those rules. But we can be sure they are correct because mathematicians have 

done the job for us.  

The following figure displays the graph of two periodic functions (one period is in orange). One function 

is smooth (left) and the other one is not continuous (right). But both have the same period  .  

 

 

 

 

 

 

The next figure displays the graphs of some (symmetric) Fourier series (in red) together with the original 

function (in blue) for an increasing number of terms in the serie. We see that the more terms we add to 

the Fourier serie, the closer is the Fourier serie to the original function.  

We see however that the Fourier serie is closer to the original function in the case of the smooth 

function (left). For the non-continuous function (right), some oscillations persist and do not improve with 

an increasing number of terms in the Fourier serie. These oscillations are symptomatic of discontinuities 

and do not disappear even for a large number of terms. They are called “Gibb’s artefacts”.  
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The graph of both functions is displayed one more time in the following figure. Their corresponding 

spectrum, their Fourier coefficients, is displayed below. The cosine-coefficient is in red and sin-

coefficient is in blue. The Fourier coefficients are discrete: there is one cosine- and one sin- coefficient 

for each discrete frequency (the lines between the dots are present only to improve visibility).  

We observe that the spectrum of the smooth function (without significant Gibb’s artefacts) decays much 

fast than the spectrum of the non-continuous function. This is true in general: the smoother is a 

function, the faster decrease its spectrum along increasing frequencies.  
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Non-periodic Fourier analysis: The Fourier transform and its inverse 

transform 

Let be      a real- or complex-valued function defined on the line of real numbers. We assume that      

is sufficiently well behaved (in particular, we assume that it converges to   at infinity sufficiently rapidly). 

We define its Fourier transform (its spectrum)       as the new function given by 

 

 

Now, if you ask yourself what “sufficiently well behaved” means (or what “converges to   at infinity 

sufficiently rapidly” means) it means any condition that guaranties the convergence of the previous 

integral.  

Assuming a function      to be sufficiently well behaved (or suitable) defined on the  -space (i.e.      is 

a spectrum), we define its inverse Fourier transform         as the new function defined by  

 

 

 

The definition domain of         is the  -space. In a simple word, the inverse Fourier transform     

should be the inverse operation of the Fourier transform   i.e. 

              

and 

              

for every   and  . But the word is not simple and although those rules hold for many functions, it breaks 

down for some other. We will give one example where it works, and another where there is some 

problem.  

The door functions have a well-defined Fourier transform. The reader can check as an exercise that, by 

evaluating the Fourier integral, one finds 

 𝑓 𝑘   ∫ 𝑓 𝑥  𝑒 𝑖 𝜋 𝑘𝑥 𝑑𝑥

  

  

 

   𝑔 𝑥   ∫ 𝑔 𝑘  𝑒𝑖 𝜋 𝑘𝑥 𝑑𝑘
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As a consequence of the linearity of the Fourier transform, it holds 

                   

The following figure displays little-door function together with its Fourier transform. 

 

 

 

 

 

 

 

 

Now, the inverse Fourier transform of        does not exist as a function because the Fourier integral 

∫                     

  

  

 

does not converge for       and        . But this is not surprising because if we would have 

defined       with different values at       and        , then its Fourier transform would still be 

exactly            (because the integral is insensitive about a change of the integrand on a set of 

measure  ). Therefore, the door function cannot be retrieved back from its Fourier transform.  

Mathematicians have overcome the problem with the theories of distributions, but we will not go into 

this in the present course. For us, the inverse Fourier transform of            just does not exist as a 

function defined on  . What we may be able to write is 

{            }            for  | |    
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The Gaussian functions have a well define Fourier transform. The Fourier transform of       given by 

       
 

√    
  

 
 

     

 

is the function        given by 

                
 

and the inverse Fourier transform of the second function is the first one. Everything runs smoothly with 

Gaussian functions. The following figure displays the graph of both functions.  

 

 

 

 

 

 

 

 

We terminate this section about the Fourier transform by giving a few identities.  

We note that  

       ∫         

  

  

 

is the “sum” of the function values.  

We also note that 

         ∫                   

  

  

   ∫              (    )    
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  ∫                         

  

  

                 

and a similar identity can be shown for the inverse Fourier transform. It follows the Fourier-shift-

theorem:  

                        

                           

We define the brackets ⟨ |  ⟩  and ⟨ |  ⟩  by  

⟨     |     ⟩   ∫      ̅̅ ̅̅ ̅̅ ̅          

  

  

 

⟨     |     ⟩   ∫      ̅̅ ̅̅ ̅̅ ̅          

  

  

 

which define some inner products of vector spaces under some conditions. Each one takes two functions 

as arguments and returns a complex value. The Parseval-Plancherel identities reads then 

⟨     |     ⟩   ⟨      |      ⟩  

⟨     |     ⟩   ⟨        | 
       ⟩  

If the brackets defined above are inner products of vector spaces, then  

‖     ‖   
   ⟨     |     ⟩  

‖     ‖   
   ⟨    |     ⟩  

define some 2-norms and the Parseval-Plancherel identities lead to 

‖    ‖   
   ‖     ‖   

  

‖       ‖   
   ‖    ‖   
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Discrete Fourier Analysis: the discrete Fourier transform and its inverse 

Transform 

Given a real- or complex-valued column vector  ⃗ of length   and given a positive length  , then can  ⃗ be 

seen as the sampling on the standard  -grid of step size    (equal to    ) of a function      defined on 

the  -space. The choice of the function      is obviously not unique, but there exist at least one.  

Alternatively, given a function      defined on the  -space and given the standard  -grid associated to 

the interval    (closed on the left and open on the right) of length   and centered in  , then is the 

sampling of      a column vector    ⃗⃗⃗⃗⃗ of length  .  

Note that in both cases, function      can be periodic or not. It does not matter. And in both cases we 

have a vector  ⃗ of length   and a standard  -grid.  

We want now do define the discrete Fourier transform of  ⃗. We will write the discrete Fourier transform 

(DFT) as  . It is a linear and invertible map i.e. an isomorphism of vector spaces. As a consequence,   can 

be interpreted as a matrix. We define the matrix of   entry wise as follows:  

                     with       {            } 

where 

   
 

 
 

as defined earlier. From the relation 

       
   

 
 

follows 

              
   

    with       {            } 

The way we define the DFT do not only depends on the vector size   as it is usually the case. In our 

definition, it also depends on the step size    of the standard  -grid, what some reader may not accept. 

We will justify it from a mathematical point of view and from a physical point of view (for consistence of 

units).  



Bastien Milani  IHU-LIRYC December 2023, Bordeaux 
 

35 
 

But before that, we will write the matrix representation of   and we will describe the connection with 

the matrix  , which is involved in the fast Fourier transform (FFT). We define the complex number 

            

So that 

             

The matrix of   is then 

     

[
 
 
 
 
                              

     
     
     

                                 ]
 
 
 
 

 

The column of  ’s correspond to     and the raw of  ’s corresponds to    .  

The fast-Fourier-transform algorithm perform a matrix multiplication by the matrix   given by 

   

[
 
 
 
 
     
                  

                  

     
                              ]

 
 
 
 

 

Component wise, it holds 

           
   

    with       {       } 

It can be shown that the matrix   is equal to the matrix      shifted circularly toward the top by     

position, and toward the left also by     positions. These are the two circular shifts needed to align the 

raw and column of  ’s.  

We will call   the circular shift toward top by     positions of a vector of   entries. Since   is a 

permutation of the entries of a vector, it is a linear map and it can be written as a matrix. Writing  ⃗ as 
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 ⃗   

[
 
 
 
 
 
     

 
   

  
 

      ]
 
 
 
 
 

 

it holds then 

     ⃗⃗⃗⃗⃗   

[
 
 
 
 
 

  
 

      

     

 
   ]

 
 
 
 
 

 

As a permutation,   has an inverse map which we will write     and which is also a linear map with its 

own matrix. It is the circular shift of     entries toward the bottom. It holds 

   

[
 
 
 
 
 

  
 

      

     

 
   ]

 
 
 
 
 

  

[
 
 
 
 
 
     

 
   

  
 

      ]
 
 
 
 
 

     ⃗⃗⃗⃗⃗ 

Without demonstration, we give the equality 

                

which is equivalent to 

 

 

It follows 

  ⃗              ⃗ 

This gives the receipt how to implement the DFT:  

- Apply the circular shift to  ⃗ (i.e. multiplication by  ),  

- Perform an FFT (i.e. multiplication by  ),  

𝐹  Δ𝑥 Σ  Ω Σ 
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- Apply the inverse circular shift (i.e. multiplication by    ),  

- Don’t forget the scaling factor   .  

 

 

 

 

The function ifftshift is in fact the Matlab implementation of the multiplication by   and the 

function fftshift is the one for    . The Matlab implementation of the FFT is the function fft.  

The following figure displays on the left the graph of the little-door function together with its sampling 

on the standard  -grid. On the right is its Fourier transform displayed together if the DFT of the function 

sampled on the left.  

 

 

 

 

 

 

 

 

 

 

 

 

In Matlab for example, for a column vector, it reads something like 

Ff = delta_x*fftshift(fft(ifftshift(f, 1), [], 1), 1); 

But if the vector is a raw vector, don’t forget to apply the transforms in the second dimension:  

Ff = delta_x*fftshift(fft(ifftshift(f, 2), [], 2), 2); 
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The following figure displays the same for the Gaussian function.  

 

 

 

 

 

 

 

 

We now justify our original choice for the definition of the DFT. We start from the Fourier integral. Then 

we assume that the integrand in small outside the interval    of length   centered in   and we 

approximate the integral with finite differences:  

      ∫                

  

  

 ∫             

 
 
 

 
 
 

 ∑                    

 
 

  

    
 
 

 

 ∑                 

 
 

  

    
 
 

  

We now evaluate this approximation in     :  

       ∑                  

     

       

  ∑                  

     

       

  (  ⃗)
 

 

Our sampling grids and our definitions are chosen so that   ⃗ is an approximation of       on the 

standard  -grid. This can be written compactly as 

  ⃗⃗⃗⃗⃗⃗    ⃗ 
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The factor    also makes sense in the definition of   from the view point of units because the unit of 

      is the unit of      multiplied by the unit of  , as given by the Fourier integral.  

Now if you ask how good the approximation is, the answer is given by a convolution product that we 

define in the next part of the course. But we can already show how this answer looks like. We use 

           ∫                  

  

  

 

Then 

(  ⃗)
 

 ∑                  

     

       

  ∑                ∫                  

  

  

     

       

 

 ∫            ∑                      

     

       

 

  

  

 ∫            ∑                

     

       

 

  

  

 

  ∫          
         

  

  

    

We have shown:  

(  ⃗)
 

  ∫          
         

  

  

    

The right hand side is a convolution with    
   

   , the asymmetric Dirichlet kernel of period  . We will 

come back to that more in details in part III.  

We finally describe the inverse discrete Fourier transform (inverse DFT). It is formally given by the 

inverse matrix of   i.e. the matrix    . Entry wise, it is given by 

                     ,   with       {            } 

or alternatively 

                 
   

 ,   with       {            } 
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We leave as an exercise to show that 

                

In order the achieve it, the important following identity is useful:  

 

 

 

where     is the set of integer multiples of  . Note that the sum is asymmetric. A symmetric sum 

would not lead to the expression on the right-hand side. It seems that asymmetry has its place in this 

world.  

In the following, we will use the superscript    (the “star” symbol) to note the complex 

conjugate-transpose of a vector or a matrix. Note that this notion is different from the “adjoint” that we 

will write later with super script    (the “dagger” symbol).  

It follows from the definitions that  

               

or equivalently 

 

 

We define the inner product   |     as 

( ⃗ | ⃗ ) 
   ⃗ 

 
   ⃗  

for any pair of sampling  ⃗  and  ⃗  of some functions defined on the  -space and where  

          

is hemitian positive definite. Similarly, we define the inner product   |     as 

  ⃗ | ⃗      ⃗ 
 
   ⃗  

𝐹  𝐹  
Δ𝑥

Δ𝑘
 

∑ 𝑒 𝑖 𝜋 
𝑛
𝑁

 𝑚  𝑚 

𝑁    

𝑛   𝑁  

    
   𝑚  𝑚 ∉ 𝑁   

𝑁   𝑚  𝑚  𝑁   
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for any pair of sampling  ⃗  and  ⃗  of some functions defined on the  -space and where  

          

is hemitian positive definite too. With these two inner products at hand, the DFT   and the inverse DFT 

    become isomorphisms of inner-product-spaces. The adjoint of   is then given by 

     
        

 

  
   

  

  
         

The DFT is therefore unitary:  

 

 

It is now easy to verify 

( ⃗ | ⃗ ) 
  (     ⃗ | ⃗ ) 

  (    ⃗ | ⃗ ) 
  (  ⃗ |  ⃗ ) 

 

and 

  ⃗ | ⃗            ⃗ | ⃗     (    ⃗ | 
  ⃗ ) 

       ⃗ | 
   ⃗    

which proves the Parseval-Plancherel identity for the discrete Fourier transform. The 2-norms defined by 

‖ ⃗‖
   

 
  ( ⃗ | ⃗ ) 

 

‖ ⃗‖   
     ⃗| ⃗    

leads to 

‖ ⃗‖
   

 
  ‖  ⃗‖

   

 
 

‖ ⃗‖   
   ‖    ⃗‖   

  

The DFT and its inverse are isometries of inner-product vector spaces. 

We finally give the relation between     and    . Matrix     is formally the inverse matrix of   . It is 

given component wise by 

         
 

 
     

   

    with       {       } 

It follows from those definitions that 

𝐹  𝐹   
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We also note that, as a permutation, the matrix   verifies:  

        

We deduce 

      
  

  
               

  

  
                                            

We have shown 

 

 

It follows 

    ⃗                 ⃗ 

This gives the receipt how to implement the inverse DFT:  

- Apply the circular shift to  ⃗ (i.e. multiplication by  ),  

- Perform an inverse FFT (i.e. multiplication by    ),  

- Apply the inverse circular shift (i.e. multiplication by    ),  

- Don’t forget the scaling factor    .  

 

 

 

 

The function ifft is the Matlab implementation of the multiplication by    .   

Unlike the DFT, the inverse DFT has a nice interpretation in term of an asymmetric Fourier serie. It holds 

by definition 

     ⃗   ∑                 

     

       

  [ ∑             

     

       

]

    

 

𝐹    Δ𝑘𝑁  Σ   Ω   Σ 

In Matlab for example, for a column vector, it reads something like 

iFg = delta_k*N*fftshift(ifft(ifftshift(g, 1), [], 1), 1); 

If the vector is a raw vector, apply the transforms in the second dimension:  

iFf = delta_k*N*fftshift(ifft(ifftshift(g, 2), [], 2), 2); 
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where 

          

In fact is     ⃗ equal to an asymmetric Fourier serie evaluated on the standard  -grid.  

Similarly to the DFT, it can be shown that holds the approximation 

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      ⃗ 

while the exact relationship between the inverse DFT and the inverse Fourier transform is 

     ⃗    ∫            
         

  

  

    

The following figure displays on the right the graph of a         function together with its sampling on 

the standard  -grid. On the left is its Fourier transform displayed together if the inverse DFT of the 

function sampled on the right.  
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The following figure displays the same for a Gaussian function.  
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Part III: Convolutions 

Introduction to the convolution product 

Given two functions      and     , their “convolution product” {   }   , or just “convolution” for 

short, is a new function {   }    defined by 

{   }     ∫                  

  

  

 

In order to build an intuition about {   }   , we set an example where      is non-negative, is   outside 

a interval of length   centered in  , and is normalized in the sense that 

∫         

  

  

   

We choose then an integer     and we define 

       

We also define the weights  

                {            } 

The weights                are approximately normalized because 

               ∑           

     

       

 ∫        

  

  

   

The convolution {   }    evaluated in   can then be approximated as 

{   }     ∫                  

  

  

 

  ∫                  
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 ∑           

 
 
  

    
 
 

            

                                              

This is a weighted average of the values of      taken in an interval of length   centered in  , where the 

weights are given by     .  

The next figure presents an example where    , function      is a Gaussian function and function      

is a door function.  

 

 

 

 

 

 

 

The convolution {   }    evaluated in   is approximately given by 

                              

It is a weighted average of the values of      taken in an interval of size   centered in  , where the 

weights are given by     .  

The next figure presents the graph of {   }    together with the graph of      as a dashed line.  

 

 

 



Bastien Milani  IHU-LIRYC December 2023, Bordeaux 
 

47 
 

 

 

 

 

 

 

 

 

 

 

As another example, we chose      to be a         function (sinus cardinal) defined as follows:  

                 

where   is given by 

    ∫              

  

  

 

so that      is normalized. We choose      to be the same door function as previously. The next figure 

shows the graph of      in red and the graph of      on the right in blue.  
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The graph of {   }    is displayed in the next figure in green while the graph of      is displayed as a 

dashed line.  

 

 

 

 

 

 

 

 

 

In this example is     not zero outside an interval, and is neither non-negative. But      is normalized 

and it still holds 

{   }    ∑   
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We now summarize a few rules that the convolution follows. The convolution is symmetric:  

{   }    {   }    

In fact it holds  

{   }     ∫                  

  

  

 

  ∫                  

  

  

 

 ∫                  

  

  

   {   }    

where the substitution 

                

was used in the second line.   

We omit the “dote-bracket” notation from now on in order to simplify the notation. That mean that we 

will write any function      just with the symbol  . The convolution {   }    will be written    .   

Another property of the convolution is 

            

We leave the proof as an exercise. The convolution is linear in both arguments:  

                             

and 

                             

The convolution {  𝑓}    evaluated in 𝑥 is a weighted average of the values of function 𝑓    

where the weights are given by function     .  

The convolution of      and 𝑓    acts like a smoothing of function 𝑓    and that the shape of this 

smoothing is given by the shape of     .   
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By the previous two rules follows that 

           ]                                     ] 

We conclude 

  
      ∑      

 

   

  ∑      

 

   

     
   

If   is periodic holds  

    
     

     

It follows 

       
              

   

 

 

 

 

 

Finally we display an example where   is an asymmetric Dirichlet (left on the next figure) kernel and 

where   is a door function centered in   (right on the next figure).  

 

 

 

 

 

 

  𝑓   Π𝐿  𝑃𝐿
𝑆𝑓 

The convolution with an 𝐿-periodic convolution kernel   verifies 

It is the periodic summation of 𝑓 convoluted with the “a single period of  ”, meaning the 

crope of   of width 𝐿.  
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The graph of the convolution of both is displayed in the following figure.  

 

 

 

 

 

 

 

 

This gives an intuitive explanation about what a convolution by a periodic function   does. We can know 

give an intuitive interpretation of the result of the DFT. We have shown in the previous chapter that 

(  ⃗)
 

  ∫          
         

  

  

    

In the language of convolutions, it reads 

 

 

 

Here is the convolution kernel 

         
       

which is  -periodic. We conclude that 

   
   

          
   

   
    

 

(𝐹𝑓)
𝑚

 {𝒜Δ𝑥
𝑁  

  𝑓}  𝑘𝑚  
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evaluated on the standard  -grid gives   ⃗. It is equal to the periodic summation of    convoluted by the 

kernel      
   

 (which oscillate and is   outside the  -FoV  ).  

Similarly one can obtain 

 

 

 

The convolution kernel is in that case    
   

, which is   periodic. We conclude that 

   
   

            
   

   
      

evaluated on the standard  -grid gives     ⃗. It is obtained by the periodic summation of      

convoluted by the kernel      
   

 (which oscillate and is   outside the FoV  ) and evaluated on the 

standard  -grid.  

In the case one want to evaluate      by measuring  ⃗ (which is what is done in MRI reconstruction), 

what we obtain by the inverse DFT is the periodic summation of      (which is responsible for fold-over 

artefacts) convoluted by      
   

 (which explains the oscillations that we call Gibbs artefacts).  

 

 

 𝐹  �⃗� 𝑛  {𝒜Δ𝑘
𝑁  

    𝑔}  𝑥𝑛  


